M. Besozzi

STATISTICA CON R PER IL LABORATORIO DI ANALISI CLINICHE

Copyright ©2013 Marco Besozzi

È garantito il permesso di copiare, distribuire e/o modificare questo documento seguendo i termini della Licenza per Documentazione Libera GNU, Versione 1.3 o ogni altra versione successiva pubblicata dalla Free Software Foundation. Copia della Licenza è consultabile all'indirizzo: <u>http://www.gnu.org/copyleft/fdl</u>

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation. A copy of the license is available at: <u>http://www.gnu.org/copyleft/fdl</u>

Introduzione

Perché usare **R**, se esistono già MedCalc, Minitab, SAS, SPSS, Stata, Systat e decine di altri programmi di statistica, oltre ad add-on per fare statistica con Excel (come ad esempio Analyse-it) e per fare statistica con Access (come ad esempio Total Access Statistics)?

Per almeno quattro buone ragioni:

 \rightarrow **R** è gratuito, e questo fatto è significativo, visto il costo di un pacchetto di statistica;

 \rightarrow **R** è disponibile per tutti e tre i sistemi operativi più diffusi, cioè per Windows, per MacOS X e per Linux;

 \rightarrow una volta installata la versione base di **R** potete accedere a una raccolta di migliaia di pacchetti aggiuntivi, che offrono soluzioni di calcolo ed elaborazioni statistiche e grafiche per (praticamente) qualsiasi problema;

 \rightarrow se non trovate quello che vi serve tra i pacchetti già disponibili (cosa poco probabile), **R** vi permette comunque di riutilizzare e adattare migliaia di funzioni già scritte e di scriverne di nuove per personalizzare un pacchetto già esistente ovvero per creare ex-novo il vostro pacchetto di analisi dei dati, orientato al vostro specifico problema.

R non è, come asseriscono gli stessi curatori del progetto, un semplice programma di statistica, ma è un ambiente per lo sviluppo dell'analisi statistica e grafica dei dati, per il quale il merito va alla bravura e all'impegno dell'**R** Development Core Team¹. Software e documentazione di **R** sono open-source e sono rilasciati gratuitamente nei termini previsti dalla Free Software Foundation².

Il problema cruciale di **R** è che è basato su un linguaggio di programmazione, è quindi molto tecnico, e per questo è difficile superare le difficoltà iniziali, al punto che molti rinunciano ad utilizzarlo: e il senso di frustrazione che ne consegue è tale da allontanare in genere definitivamente il soggetto da successivi tentativi. Lo scopo di questo manuale, che riprende i contenuti del corso base di **R** che si trova sul mio sito³, è proprio quello di aiutare a superare queste difficoltà iniziali, per favorire l'accesso al mondo di **R**. Coloro che, operando nel laboratorio di analisi cliniche, hanno la necessità di affrontare qualche problema di analisi dei propri dati, troveranno in **R** uno strumento straordinario, ma soprattutto scopriranno con il tempo di avere fatto un investimento strategico per il proprio sviluppo professionale.

¹ R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL <u>http://www.R-project.org</u>

² vedere <u>http://www.gnu.org/</u> alla voce Licenze.

³ <u>http://www.bayes.it/html/statistica_con_r.html</u>

1. Istruzioni rapide per l'uso

Per imparare ad usare **R**, oltre ovviamente a un interesse per la statistica, servono:

 \rightarrow il programma

→ i dati

 \rightarrow gli script

 \rightarrow la documentazione.

1.1. Il programma

Come installare e utilizzare il programma R è descritto nel capitolo 2. R installazione e funzioni base.

1.2. I dati

I **dati** relativi a specifici problemi del laboratorio clinico sono contenuti in file che potete scaricare aprendo i link che verranno forniti illustrando ciascun problema e la sua soluzione in **R**. Potete anche scaricare tutti i dati di esempio in una sola volta in questo modo:

 \rightarrow create la cartella C:\R\;

 \rightarrow salvate in questa cartella il file <u>csv.zip</u>;

 \rightarrow scompattate il file csv.zip nella cartella C:\R.

Tutti gli script che trovate nei capitoli che seguono fanno riferimento ai nomi dei file che avrete scompattato e alla posizione $C:\R$. Potete ovviamente cambiare la posizione nella quale salvare i dati correggendo opportunamente gli script.

Considerate infine che in **R** il separatore decimale è il punto (.) e che questa convenzione per ragioni di omogeneità viene qui adottata oltre che nei file di dati anche in tutto il testo che segue.

1.3. Gli script

Gli script, cioè le sequenze di codice R che risolvono gli specifici problemi impiegando i dati forniti, li trovate nei capitoli **3.** R funzioni statistiche, **4.** R funzioni grafiche e **5.** R problemi scelti. Questi capitoli rappresentano il nucleo del manuale in quanto le sequenze di codice possono essere eseguite immediatamente copiandole dal testo nella Console di R. Possono anche essere salvate sotto forma di file di testo per realizzare una vera e propria libreria di script da utilizzare e adattare al bisogno in un secondo tempo.

1.4. La documentazione

La documentazione necessaria per utilizzare rapidamente **R** è contenuta in questo manuale. Ma si tratta ovviamente di una documentazione limitata e finalizzata all'apprendimento delle basi elementari di **R** per chi opera in un laboratorio di analisi cliniche. Sul sito ufficiale di \mathbf{R}^4 trovate la sezione Documentation:

⁴ <u>http://www.r-project.org/</u>

Statistica con R per il laboratorio di analisi cliniche - ver 1.0

qui potete fare click su Manuals e scaricare, in formato pdf, tutti i manuali relativi alla versione di **R** che avete installato, ovvero da qui potete accedere alla sezione Contributed documentation nella quale trovate anche manuali in lingua italiana. Anche se in questo corso base non si fa diretto ricorso alla documentazione disponibile sul sito di **R**, questa risulterà ovviamente essenziale per affrontare le domande che inevitabilmente vi sorgeranno durante l'uso del programma, in particolare quando vorrete adattare gli script alle vostre esigenze.

In aggiunta vi possono aiutare nel processo di apprendimento di R:

- → il sito <u>Quick-R for SAS/SPSS/Stata Users</u> di Robert I. Kabacoff;
- → il sito <u>R Graphical Manual</u> di Osamu Ogasawara;
- \rightarrow il sito <u>R-Tutorial</u> di Chi Yau;
- \rightarrow il sito <u>R-Forge</u>, la piattaforma di sviluppo riservata alla comunità **R**;
- \rightarrow il blog <u>Revolutions</u>, interamente dedicato alle notizie e informazioni per I membri della comunità **R**.

Della sterminata bibliografia di **R** cito solo alcuni manuali riguardanti argomenti generali, per i quali un ringraziamento va agli Autori che li hanno pubblicati consentendone il libero utilizzo a scopo didattico:

- \rightarrow <u>Introduzione ad R</u> di Roberto Boggiani;
- → Esercitazioni di statistica biomedica di Matteo Dell'Omodarme;
- → Formulario di Statistica con R di Fabio Frascati;
- \rightarrow <u>Applied Statistics for Bioinformatics using R</u> di Wim P. Krijnen;
- \rightarrow <u>Using R for Data Analysis and Graphics Introduction, Code and Commentary</u> di J. H. Maindonald;
- \rightarrow <u>Una guida all'utilizzo dell'ambiente statistico R</u> di Angelo M. Mineo;
- \rightarrow <u>R: un ambiente opensource per l'analisi statistica dei dati</u> di Vito Ricci;
- \rightarrow <u>Analisi delle serie storiche con R</u> di Vito Ricci;
- \rightarrow <u>Rappresentazione analitica delle distribuzioni statistiche con R</u> di Vito Ricci;
- \rightarrow <u>Principali tecniche di regressione con R</u> di Vito Ricci;
- \rightarrow <u>simpleR Using R for Introductory Statistics</u> di John Verzani.

2. R installazione e funzioni base

La prima cosa da fare se volete cimentarvi con **R** è collegarvi al sito ufficiale di \mathbf{R}^5 , che trovate anche digitando semplicemente la lettera dell'alfabeto **R** sul motore di ricerca Google, per effettuare il download dell'ultima versione del programma. Vi verrà richiesto da quale dei siti del CRAN (Comprehensive **R** Archive Network), in Italia o in una delle nazioni che trovate elencate, volete effettuare il download. Sul sito dal quale avrete deciso di effettuare il download, qualsiasi esso sia, troverete i link alle versioni di **R** precompilate per i tre principali sistemi operativi: Linux, MacOS X e Windows.

Nella pagina di download selezionate la sola distribuzione/installazione base (dei pacchetti aggiuntivi parleremo tra poco), salvatela sul vostro disco in un posto sicuro (il file avrà un nome del tipo R-3.0.0-win.exe, dove invece di 3.0.0 troverete la sigla dell'ultima versione aggiornata che avete appena scaricato). Terminato il download fate doppio click sul file scaricato e seguite le istruzioni per installare **R** sul vostro PC.

Al termine dell'installazione se avete un PC con sistema operativo a 32 bit sul desktop vi comparirà l'icona con il collegamento a **R** con la sigla i386 che precede il numero di versione di **R**. Se avete un PC con sistema operativo a 64 bit vi comparirà la sigla x64.

2.1. La Console di R

Fate doppio click sull'icona con il collegamento a **R** per avviare il programma, e vi apparirà la Console di R (**Figura 2.1**) con la quale inizieremo a lavorare.

Il simbolo > è il prompt, e indica che R è in attesa che scriviamo che cosa vogliamo fare tramite la tastiera (come faremo tra poco) e nel suo linguaggio (del quale cercheremo di apprendere le basi).

Le prime due cose che facciamo con **R** sono molto semplici:

 \rightarrow al prompt di **R** scrivete demo(), premete invio, e vi comparirà un elenco di dimostrazioni disponibili nel pacchetto base appena installato;

 \rightarrow scrivete ora demo(graphics), premete invio, seguite le istruzioni che compaiono nella Console di R, e potrete apprezzare una dimostrazione delle capacità grafiche della installazione base. Nei pacchetti aggiuntivi disponibili per R (vedere appresso), troverete una infinità di altre possibilità di elaborazione grafica;

Come avete potuto constatare **R** nella versione base è fornito di una interfaccia molto semplice. Si tratta infatti di una interfaccia a carattere o CUI (Character User Interface) che prevede l'immissione delle istruzioni una linea per volta per volta mediante una linea di comando o CLI (Command Line Interface) ci riporta agli interpreti di comandi di alcuni decenni fa. E potrebbe apparire obsoleta oggi che l'informatica ci ha abituati ad utilizzare esclusivamente interfacce grafiche o GUI (Graphical User Interface).

In effetti anche per **R** è disponibile una GUI che consente all'utente di interagire con R con una interfaccia "evoluta", simile a quella degli altri programmi di statistica in ambiente Windows⁶. Tuttavia qui verrà

⁵ <u>http://www.r-project.org/</u>

⁶ La GUI ufficiale di **R** è R Commander. Per installarla dovete collegarvi a Internet e scaricare la libreria Rcmdr. **R** si collegherà al CRAN prescelto per scaricare il pacchetto Rcmdr che volete installare, ma attenzione: Rcmdr presuppone che siano installati sul PC altri pacchetti, cui esso si appoggia. Per questo vedrete effettuare

utilizzata esclusivamente l'interfaccia a carattere della Console di R. Questo è utile a scopo didattico, in quanto consente di leggere in chiaro le istruzioni e quindi di apprendere sintassi e regole del linguaggio **R**. Ma è utile anche perché semplicemente copiando le istruzioni in file di testo sarà possibile salvarle per poi modificarle al bisogno e riutilizzarle, e costruirsi così la propria libreria di script in linguaggio **R** seguendo la sempre efficace metodologia dell'imparare-facendo.

Figura 2.1 Come di presenta la Console di R versione 3.0.0 su una piattaforma Windows a 64 bit.

2.2. Il sistema di help di R

Ecco alcuni comandi che vi consentono di accedere rapidamente alle varie possibilità offerte dal sistema di help di R, e che vi suggerisco ovviamente di provare digitando i comandi nella Console di R: → scrivete help.start() e premete invio per accedere all'help di R navigabile con il browser, il più importante;

automaticamente il download e l'installazione di più pacchetti, tutti quelli tra loro concatenati e quindi necessariamente e contemporaneamente richiesti per garantire la funzionalità dell'unico pacchetto (Rcmdr) che avete selezionato. Una volta installato R Commander viene richiamato al bisogno sempre con il comando library(Rcmdr) digitato il quale vedrete comparire la sua interfaccia grafica dalla quale è possibile accedere alla documentazione di R Commander selezionando Aiuto >> Introduzione a R Commander. Potete anche accedere per altra documentazione al sito dell'autore John Fox (http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/).

→ scrivete help(plot) e premete invio per avere un aiuto sulla funzione plot;

→ scrivete **?plot** e premete invio per avere un aiuto sulla funzione plot;

→ scrivete apropos("plot") e premete invio per la lista di tutte le funzioni che contengono la stringa plot;

→ scrivete **RSiteSearch("")** e premete invio per effettuare una ricerca aiuto sul sito web di **R**;

→ scrivete data() e premete invio per avere la lista dei set di dati di esempio;

 \rightarrow scrivete **example(Theoph)** e premete invio poi fate click sulla finestra grafica che si apre sulla destra per avere un esempio della funzione plot applicata ai dati della cinetica della teofillina.

Potete accedere alle funzioni del sistema di help di R anche dal menù Aiuto della Console di R.

2.3. Pacchetti aggiuntivi rispetto all'installazione base

L'installazione del pacchetto base di R include una serie limitata di funzioni statistiche. Se vi collegate al

Coftware	CRAN nella sezione Software alla voce Packages l'elenco dei pacchetti di statistica
	aggiuntivi (oltre 4500 a maggio 2013, e in continuo aumento) che potete installare. Sono
<u>R Sources</u>	ciascuno orientato alla risoluzione di un problema specifico. Fate click sul nome del
<u>R Binaries</u>	pacchetto che vi potrebbe forse interessare per accedere al suo Reference manual
<u>Packages</u>	che contiene la documentazione necessaria per capire se fa al vostro bisogno. Potete
<u>Other</u>	guindi scaricare il pacchetto sul vostro PC dalla

Console di R selezionando dal menù Pacchetti l'opzione Installa pacchetti... Comparirà prima una finestra per la selezione del CRAN da cui scaricare il pacchetto, e una volta selezionato il CRAN comparirà la finestra con l'elenco dei pacchetti. Per familiarizzare con questa funzione scaricate la libreria car che consente di effettuare alcune

CRAN mirror	
Ireland Italy (Milano) Italy (Padua) Italy (Palermo) Japan (Hyogo)	*

interessanti elaborazioni grafiche (la utilizzeremo più avanti). Attenzione: qualcuno dei pacchetti che si desidera installare potrebbe presupporre uno o più altri pacchetti, cui esso si appoggia. In questo caso verrà effettuato automaticamente il download e l'installazione di più pacchetti, tutti quelli tra loro

Packages			
car CARBayes carcass cardidates	*		

concatenati e quindi necessariamente e contemporaneamente richiesti per garantire la funzionalità dell'unico pacchetto che si desiderava installare. Data la necessità di disporre, per eseguire i vari esempi forniti nei prossimi capitoli, di alcuni pacchetti che inizialmente non avrete nella vostra installazione base di **R**, è importante seguire gli esempi che faremo avendo sempre il PC collegato con Internet.

2.4. Come strutturare i dati da importare in R

R nella versione base non prevede strumenti evoluti per la gestione dei dati in forma tabellare. Si tratta di una scelta voluta e comprensibile visto che, come è facile immaginare, ciascuno di noi è portato a continuare a gestirli con lo strumento cui è abituato. Questo nella maggior parte dei casi sarà un foglio elettronico (spreadsheet) in grado di gestire file in formato .xls, .xlsx e .csv (sulla importanza di quest'ultimo formato in **R** torneremo fra poco) e quindi tipicamente Excel o meglio ancora

OpenOffice.org Calc che ha il vantaggio di essere un programma open-source e gratuito⁷.

Una struttura dei dati tipica è questa

id	Sesso	Colesterolo	Trigliceridi	Urea	Creatinina
MT	М	189	164	32	0.6
GF	F	215	188		1.2
MC	F	197	153	26	0.5
SB	М	236	280	22	
FE	F	203	158	48	1.3

nella quale le cose da notare sono assai semplici:

 \rightarrow le colonne corrispondono alle variabili;

 \rightarrow le righe corrispondono ai casi;

 \rightarrow i nomi delle variabili sono riportati nella prima riga, e sono facoltativi (ma ovviamente raccomandati per mantenere ordine e chiarezza nel proprio lavoro);

 \rightarrow l'identificativo univoco di ciascun caso è riportato nella prima colonna (nella variabile che io per comodità denominerò sempre id), ed è facoltativo (può essere utile in casi specifici). Se l'identificativo non viene utilizzato **R** numera automaticamente i casi in ordine screscente;

 \rightarrow le variabili possono essere sia numeriche, sia qualitative (per esempio, qui, la variabile Sesso);

 \rightarrow è possibile definire una o più variabili in base alla/e quale/i raggruppare i dati (nell'esempio, i dati potranno essere elaborati o tutti insieme o suddivisi in due gruppi in base al valore assunto dalla variabile Sesso). Poiché **R** riconosce lettere maiuscole e lettere minuscole, è indispensabile che la variabile in base alla quale i dati sono raggruppati sia codificata in modo rigoroso (sesso maschile sempre M, e non M o m a caso, eccetera);

→ è ammessa la mancanza di dati (per esempio qui manca il valore della Creatinina del caso SB, e il campo è quindi vuoto), che **R** al momento di importare i dati riconoscerà e classificherà automaticamente riportando la sigla NA (Not Available).

Quella riportata è una struttura dati tipica ma non è la sola possibile in **R**. Altre strutture dati che i pacchetti di **R** sono in grado di utilizzare, e in taluni casi che sono specificamente richieste da alcuni pacchetti perché i dati possano essere elaborati, saranno illustrate con gli esempi trattati di volta in volta.

2.5. I dati dimostrativi e gli script

L'impostazione di questo manuale è quella dell'imparare-facendo. Per questo ho predisposto una serie di esempi che includono sia i dati da elaborare sia il codice **R** che li elabora.

I file nomedelfile.csv contengono i dati da elaborare. Si tratta di dati in formato .csv (comma separated value), il formato dati raccomandato per R. I file csv possono essere generati con Excel e OpenOffice.org Calc semplicemente selezionando il formato csv al momento di salvare i dati. Da notare che negli esempi forniti in questo manuale il separatore nei file csv è sempre il punto e virgola (;). R riconosce il punto e virgola come separatore di campo in quanto come vedremo negli script viene specificato il separatore utilizzato nel file di dati csv con il parametro sep=";". Cambiando il valore tale parametro è possibile importare dati delimitati per esempio con la virgola (sep=","), con uno spazio vuoto (sep=" ") o con qualsiasi altro separatore (ovviamente attenzione alla compatibilità tra file realizzati su PC diversi, che potrebbero essere diversamente configurati ed utilizzare differenti separatori di campo).

⁷ Potete effettuare il download di OpenOffice dal sito <u>http://it.openoffice.org/</u>

Il codice **R** che elabora i dati viene riportato direttamente nel testo di questo documento, con le seguenti convenzioni:

 \rightarrow le righe di codice in carattere normale e precedute dal simbolo # rappresentano dei semplici promemoria, dei commenti, e non sono eseguite;

 \rightarrow le righe di codice **in grassetto e colore** rappresentano il codice **R** che viene eseguito.

Ecco un esempio per iniziare a familiarizzare con dati e script:

 \rightarrow create la cartella C:\R\;

 \rightarrow salvate in questa cartella il file <u>Boxplot.csv</u>;

 \rightarrow copiate il codice che segue e incollatelo nella **Console di R.**

INIZIO ESEMPIO # la seguente riga di codice importa i dati, notare / invece di \ su windows mydata <- read.table("c:/R/Boxplot.csv", header=TRUE, sep=";") # la seguente riga traccia i boxplot delle IgA per ciascuna diagnosi boxplot(IgA~Diagnosi, data=mydata, main="IgA nelle malattie croniche del fegato", xlab="Diagnosi clinica", ylab="IgA in mg/dL", notch=FALSE, col="yellow") # FINE ESEMPIO

Vedete comparire un grafico (**Figura 2.2**) del tipo "box & whiskers plot" (diagramma a scatola e baffi) che illustra la concentrazione delle IgA (in g/L) in un gruppo di soggetti sani (Controlli) e la confronta graficamente con quella rilevata in soggetti con cirrosi alcolica (AC), epatite cronica attiva (CAH), epatite cronica persistente (CPH), epatite alcolica non cirrotica (NCAH).

Da notare che se togliete le righe di commento (che iniziano con #) vedete che tutta la complessa sequenza di istruzioni che porta alla realizzazione del grafico è realizzata con due sole righe di codice. Ecco evidenziato un fatto importante: **R** è un linguaggio conciso ed essenziale.

Cerchiamo ora di capire meglio cosa è accaduto. La prima riga di codice è: mydata <- read.table("c:/R/Boxplot.csv", header=TRUE, sep=";")

Ci dice che i dati devono essere letti (read.table()) dal file c:/R/Boxplot.csv, aggiunge che il file ha una intestazione (header=TRUE) nella quale si trovano i nomi delle variabili, che il separatore tra campi è un punto e virgola (sep=";") e che il contenuto del file di dati deve essere assegnato (<- è l'operatore di assegnazione) ad un oggetto denominato mydata (potrebbe essere denominato in qualsiasi altro modo: provate a farlo, ricordandovi di correggere il nome dell'oggetto anche nella seconda riga di codice).

Aprite il file Boxplot.csv con Excel o OpenOffice Calc: come vedete nella prima colonna sono riportati i valori della variabile Diagnosi e nella seconda colonna sono riportati (per concisione nella figura sono state eliminate le numerose righe di dati intermedi) i valori della variabile IgA (Figura 2.3).

Figura 2.3	Come appare un file in formato csv aperto con
Excel o con	OpenOffice Calc.

 11
 CAH
 2.35

 12

 12

 13
 CAH
 2.93

 14
 AC
 3.51

 15

 16

 AC
 6.22

Se invece aprite il file Boxplot.csv con un editor di testo come il Blocco note di Windows (Figura 2.4) vedete i dati nel formato in cui sono stati salvati sul disco:

Figura 2.4 Come appare un file in formto csv aperto con un editor di testo come il Blocco note di Windows.

В

lgA

1.22

2.37

7.44

3.75

2.45

3.47

А

Diagnosi

2 Controlli

4 Controlli 5 NCAH

3

6 7 NCAH

8 CPH

9 10 CPH

1

Nella prima riga sono stati salvati i nomi delle due variabili contenute nel file, rispettivamente la diagnosi (Diagnosi) e la concentrazione delle IgA in mg/dL (IgA), che sono in due campi (colonne) diversi separati da un punto e virgola (;). Nelle righe successive sono stati salvati i valori delle due variabili per ciascuno dei casi osservati, sempre separati dal punto e virgola (separatore di campo).

La seconda riga di codice è:

boxplot(IgA~Diagnosi, data=mydata, main="IgA nelle malattie croniche del fegato", xlab="Diagnosi clinica", ylab="IgA in mg/dL", notch=FALSE, col="yellow")

Ci dice di tracciare un diagramma a scatola e baffi (boxplot()), traendo i dati dall'oggetto mydata (data=mydata), aggregando i dati per diagnosi (lgA~Diagnosi), aggregando cioè i valori della variabile IgA per ciascun valore della variabile Diagnosi. Aggiunge il titolo del diagramma (main="lgA nelle malattie croniche del fegato"), l'etichetta dell'asse delle x (xlab="Diagnosi clinica"), l'etichetta dell'asse delle y (ylab="lgA in mg/dL"), specifica che vogliamo la scatola di colore giallo (col="yellow"), e che le scatole non devono avere l'incisura (notch=FALSE, i dettagli di questo tipo di rappresentazione grafica saranno discussi successivamente in uno specifico esempio).

Torniamo ora al codice **R** dell'esempio con l'obiettivo di salvarlo per poterlo riutilizzare in un secondo tempo, modificandolo per adattarlo a nuove esigenze. Per questo dovete semplicemente selezionare e copiare il codice **R** per incollarlo in un editor di file di testo. In Windows è possibile utilizzare il Blocco note di Windows che trovate in Programmi >> Accessori. Dopo avere copiato il codice salvate il file e denominatelo Boxplot.txt (Figura 2.5).

File Modifica Formato Visualizza ?	
<pre># INIZIO ESEMPIO # la seguente riga di codice importa i dati, notare / invece di \ su windows mydata <- read.table("c:/R/Boxplot.csv", header=TRUE, sep=";") # la seguente riga traccia i boxplot delle IgA per ciascuna diagnosi boxplot(IgA~Diagnosi, data=mydata, main="IgA nelle malattie croniche del fegat xlab="Diagnosi clinica", ylab="IgA in mg/dL", notch=FALSE, col="yellow") # FINE ESEMPIO</pre>	:0",

Figura 2.5 Il codice R per generare i box & whiskers plot, copiato nel Blocco note di Windows.

A questo punto avrete due file Boxplot. Il primo è il file Boxplot.csv che vi ho fornito e che contiene i dati da elaborare, il secondo è il file Boxplot.txt che avete salvato e che contiene il codice R per tracciare i box & whiskers plot.

In alternativa al Blocco note di Windows per salvare i codice R potete utilizzare l'Editor di R,

che potete aprire dalla Console di R selezionando File >> Nuovo script. Incollate il codice copiato nell'Editor di R e salvatelo in un file. Ricordate che dalla console di R i file sono salvati di default con l'estensione .R e con il Blocco note di Windows i file sono salvati invece con l'estensione .txt: ma di fatto si tratta di file di testo assolutamente identici. Per salvare il codice R potete scegliere di utilizzare il Blocco note di Windows oppure l'Editor di R a vostro piacimento.

Un file di dati (.csv) e un file (.txt o .R) con il codice **R** per elaborarlo sono tutto quanto serve per lavorare con **R**.

2.6. Come importare in R i dati di un file .csv

È necessario ricordare sempre che:

 \rightarrow il formato . csv è il formato raccomandato per importare i dati in **R**;

 \rightarrow Excel e OpenOffice.org Calc salvano in formato .xls o .xlsx (come formato di default);

→ è possibile salvare i dati in formato .csv anche con Excel e OpenOffice.org Calc salvando il file con l'opzione Salva con nome... e scegliendo come Tipo di File il formato .csv.

Ecco un esercizio per migliorare la capacità di importare in **R** i dati di un file .csv:

 \rightarrow create la cartella C:\R\;

 \rightarrow salvate in questa cartella i file <u>InputCSVconid.csv</u> e <u>InputCSVsenzaid.csv</u>.

Entrambi i file .csv contengono gli stessi dati relativi alla composizione in calcio, fosfato, ossalato e magnesio di 10 calcoli delle vie urinarie. Aprite il file InputCSVcoinid.csv utilizzando il Blocco note di Windows, per vedere come sono organizzati i dati in un tipico file .csv (comma separated values) nel quale la prima variabile (id) contiene l'identificativo univoco del caso mentre le successive quattro contengono la quantità di Calcio, Fosfato, Ossalato Magnesio:

id;Calcio;Fosfato;Ossalato;Magnesio

C1;99;81;69;61 C2;78;65;53;43 C3;81;66;38;54 C4;45;23;19;16 C5;44;18;24;19 C6;102;83;72;66 C7;83;68;49;45 C8;74;71;41;57 C9;38;19;22;14 C10;48;14;21;12

Copiate e incollate nella Console di R questa riga di codice:

mydata <- read.table("c:/R/InputCSVconid.csv", header=TRUE, sep=";", row.names="id")</pre>

con la quale è possibile importare in **R** i dati specificando che gli identificativi univoci di ciascun caso sono contenuti nella colonna id (row.names="id"). Il codice riportato sopra può essere interamente riutilizzato per le vostre specifiche esigenze, ricordando che dovete semplicemente:

→ sostituire il nome del file "c:/R/InputCSVconid.csv" con quello del vostro file;

 \rightarrow controllare il separatore di campo usato ed eventualmente correggere opportunamente il punto e virgola in sep=";".

Adesso nella Console di R scrivete

mydata

e premete invio e vedrete il contenuto dell'oggetto mydata, rappresentato appunto dai dati che avete

appena importato:

	Calcio	Fosfato	Ossalato	Magnesio
C1	99	81	69	61
C2	78	65	53	43
C3	81	66	38	54
C4	45	23	19	16
C5	44	18	24	19
CG	102	83	72	66
C7	83	68	49	45
C8	74	71	41	57
C9	38	19	22	14
C10	48	14	21	12

Se controllate ora il secondo esempio, trovate che nel file InputCSVsenzaid.csv i dati sono i medesimi, tranne che per il fatto che manca il campo/variabile id:

Calcio;Fosfato;Ossalato;Magnesio

99;81;69;61 78;65;53;43 81;66;38;54 45;23;19;16 44;18;24;19 102;83;72;66 83;68;49;45 74;71;41;57 38;19;22;14 48;14;21;12

Copiate e incollate nella Console di R questa riga di codice: mydata <- read.table("c:/R/InputCSVsenzaid.csv", header=TRUE, sep=";") nella quale il solo dato evidente e significativo (a parte il diverso nome del file) è che ora è scomparso il parametro row.names="id".

Adesso nella Console di R scrivete

mydata

e premete invio e vedrete il contenuto dell'oggetto **mydata**, rappresentato appunto dai dati che avete appena importato:

	Calcio	Fosfato	Ossalato	Magnesio
1	99	81	69	61
2	78	65	53	43
3	81	66	38	54
4	45	23	19	16
5	44	18	24	19
6	102	83	72	66
7	83	68	49	45
8	74	71	41	57
9	38	19	22	14
10	48	14	21	12

Come potete notare nel caso in cui manchi l'identificativo della riga/caso, **R** provvede ad assegnarlo automaticamente, sotto forma di un numero progressivo (1 per la prima riga, 2 per la seconda riga, eccetera).

2.7. Come importare in R i dati di un file .xls o .xlsx

Se il formato .csv è il formato raccomandato per importare i dati in **R** la ragione è semplice: si tratta di un formato standard (fissato una volta per tutte e universalmente riconosciuto). Mentre i formati .xls e .xlsx non lo sono, e la struttura dei file potrebbe cambiare nelle nuove versioni di Excel e di OpenOffice Calc senza alcun preavviso, causando errori imprevedibili nell'importazione dai dati in **R**.

Nonostante questo in **R** trovate alcune librerie che consentono di importare i dati direttamente da file .xls e .xlsx. Qui illustro la libreria xlsx che potete scaricate dal CRAN selezionando nel menù Pacchetti di R l'opzione Installa pacchetti... e quindi selezionando xlsx dall'elenco dei pacchetti (Packages) disponibili.

Packages	
xgrid XiMpLe xkcd XLConnect xlsx	*

Ora:

 \rightarrow create la cartella C:\R\;

 \rightarrow salvate in questa cartella i file <u>InputXLS.xls</u> e <u>InputXLSX.xlsx</u>.

Quindi copiate e incollate nella Console di R questo codice: #

require(xlsx)

mydata <- read.xlsx("C:/R/InputXLS.xls", sheetName="Conidriga")</pre>

#

dove gli unici argomenti richiesti dalla funzione **read.xlsx** sono il nome del file con il percorso completo (C:/R/InputXLS.xls) e il nome del foglio ("Conidriga") all'interno del file. Se ora digitate mydata e premete invio potete scorrere nella Console di R i dati. Per avere la conferma del fatto che sono stati importati correttamente confrontateli con l'originale aprendo con Excel o OpenOffice Calc il foglio Conidriga del file InputXLS.xls.

Ripetete il tutto con il seguente codice:

#

require(xlsx)

mydata <- read.xlsx("C:/R/InputXLSX.xlsx", sheetName="Senzaidriga")</pre>

#

che mostra come la libreria possa essere applicata anche al più recente formato di file .xlsx. Anche in questo caso se digitate mydata e premete invio potete scorrere nella Console di R i dati. Per avere la conferma del fatto che sono stati importati correttamente confrontateli con l'originale aprendo con Excel o OpenOffice Calc il foglio Senzaidriga del file InputXLSX.xlsx.

Per le molte altre cose che è possibile fare con la libreria xlsx si rimanda alla documentazione della libreria xlsx che trovate sul CRAN anche digitando semplicemente "package xlsx" nella casella di ricerca di Google.

2.8. Gestione dei file con dati mancanti

 \rightarrow create la cartella C:\R\;

 \rightarrow salvate in questa cartella il file <u>InputNA.csv</u>.

Innanzitutto aprite il file InputNA.csv utilizzando il Blocco note di Windows. Contiene la concentrazione delle IgA (in g/L) in un gruppo di soggetti sani (Controlli) e in soggetti con cirrosi

alcolica (AC), epatite cronica attiva (CAH), epatite cronica persistente (CPH), epatite alcolica non cirrotica (NCAH) organizzati in cinque colonne. Come vedete (si tratta degli stessi del paragrafo 2.5 ma organizzati in modo diverso) le cinque classi di pazienti contengono ciascuna un numero differente di casi:

Normali; NCAH; CPH; CAH; AC 1.22;7.44;2.45;2.35;3.51 2.81;4.58;1.63;3.21;4.23 4.02;3.71;3.44;3.88;7.66 2.23;4.94;2.47;1.56;9.54 2.35;3.49;1.95;1.78;11.35 1.64;3.88;4.56;2.49;6.43 2.08;4.71;7.31;3.11;5.28 1.96;4.32;5.78;4.56;2.14 1.54;4.9;3.4;5.11;4.76 1.63;11.43;5.12;2.36;7.91 3.25;4.63;6.88;2.98;9.33 2.9;4.11;3.21;2.53;18.57 3.44;5.03;3.64;1.77;8.81 2.55;9.12;2.8;1.51;14.31 1.18;1.32;3.47;2.93;10.83 1.78;4.33;;;8.48 2.56;5.66;;;9.56 1.36;4.08;;;9.01 1.83;2.48;;;12.44 2.4;1.95;;;7.61 2.61;3.75;;;7.03 3.02;;;;8.8 3.18;;;;6.12 2.97;;;;5.22 1.99;;;;7.99 2.57;;;;6.11 2.13;;;;5.88 3.56;;;;12.3 3.76;;;;14.83 2.28;;;;9.07 1.24;;;;6.83 1.88;;;;6.22 2.76;;;; 1.88;;;; 3.12;;;; 3.54;;;; 3.88;;;; 3.02;;;; 1.18;;;; 2.66;;;; 2.28;;;; 1.33;;;; 1.99;;;; 3.15;;;; 3.18;;;; 4.03;;;; 1.16;;;; 1.96;;;; 3.44;;;; 2.37;;;;

```
Copiate e incollate nella Console di R questo codice:

#

mydata <- read.table("c:/R/InputNA.csv", header=TRUE, sep=";")

mydata

x <- mydata[c("Normali")]

colMeans(x)

x <- mydata[c("NCAH")]

colMeans(x)

x <- mydata[c("NCAH")]

colMeans(x, na.rm=TRUE)

#
```

Ora nella utilizzate i tasti Pag-su e Pag-giù per scorrere nella finestra della Console di R il codice eseguito:

 \rightarrow innanzitutto sono importati i dati

```
mydata <- read.table("c:/R/InputNA.csv", header=TRUE, sep=";")</pre>
```

 \rightarrow viene visualizzato l'oggetto **mydata** che contiene i dati importati e si vede che **R** ha sostituito automaticamente i dati mancanti con la sigla NA (che sta per Not Available)

mydata

→ la media nella colonna Normali, nella quale non vi sono dati mancanti, viene calcolata

x <- mydata[c("Normali")]

colMeans(x)

Normali

```
2.457
```

 \rightarrow la media della colonna NCAH a causa dei dati mancanti non può essere calcolata, e viene restituito NA **x <- mydata[c("NCAH")]**

colMeans(x)

NCAH

NA

 \rightarrow con il parametro **na.rm=TRUE** che rimuove i dati mancanti la media della colonna NCAH viene invece calcolata

x <- mydata[c("NCAH")]

colMeans(x, na.rm=TRUE)

NCAH

4.755238

Vedremo nel paragrafo dedicato alle statistiche elementari come con la funzione **na.omit()** sia possibile eliminare definitivamente da una tabella i casi con dati mancanti.

2.9. Inserimento dei dati dalla Console di R

Se normalmente i dati sono importati dall'esterno, in alcuni casi potrebbe essere utile gestirli direttamente dalla Console di R. Per questo ho predisposto tre esempi, che illustrano la sintassi da utilizzare per inserire direttamente da tastiera vettori (array) numerici e non, e combinarli in tabelle (dataset) assegnando i nomi alle variabili. Sperimentateli per ora a scopo didattico (ma prima o poi vi verranno utili). Dopo avere eseguito ogni esempio utilizzate casi i tasti Pag-su e Pag-giù per scorrere nella finestra della Console di R quanto è accaduto.

Il primo esempio genera due vettori, li combina in una matrice, assegna i nomi alle variabili (colonne) e assegna un descrittore ai casi (righe).

PRIMO VETTORE # genera gli interi da 1 a 10 x <- 1:10 **# SECONDO VETTORE** # genera dieci valori di deviata normale standardizzata z y <- rnorm(10) **# COMBINA I DUE VETTORI IN UNA MATRICE** # combina x e y nell'oggetto mymatrix mymatrix <- data.frame(x,y)</pre> # mostra l'oggetto mymatrix mymatrix # assegna i nomi alle variabili/colonne names(mymatrix) <- c("Progressivo", "Deviata normale standardizzata z") # mostra mymatrix mymatrix # assegna un descrittore ai casi/righe row.names(mymatrix) <- c("Uno","Due","Tre","Quattro","Cinque","Sei","Sette","Otto","Nove","Dieci") # mostra mymatrix mymatrix

Il secondo esempio genera un matrice 2x2 (due righe per due colonne) e assegna i nomi alle righe e i nomi alle colonne.

Il terzo esempio genera una tabella (dataset) che contiene valori numerici, alfanumerici e logici, e assegna i nomi alle variabili (colonne).

2.10. Salvare una sessione di R in un file

 \rightarrow create la cartella C:\R\;

 \rightarrow salvate in questa cartella il file <u>OutputDati.csv</u>;

```
Quindi copiate e incollate nella Console di R questo codice:
```

```
#
mydata <- read.table("c:/R/OutputDati.csv", header=TRUE, sep=";", row.names="id")
sink("c:/R/OutputFile.txt", append=FALSE, split=FALSE)
mydata
sink()
#</pre>
```

Il codice esegue alcune cose molto semplici:

 \rightarrow sono importati i dati

```
mydata <- read.table("c:/R/OutputDati.csv", header=TRUE, sep=";", row.names="id")</pre>
```

→ l'output viene ridiretto dalla Console di R a un file, di cui sono specificati nome e percorso (c:/R/OutputFile.txt)

sink("c:/R/OutputFile.txt", append=FALSE, split=FALSE)

 \rightarrow viene visualizzato l'oggetto mydata che contiene i dati importati scrivendo i dati su file invece di inviarli alla Console di R, come dimostrato dal fatto che nella cartella C:\R\ vi comparirà il file OutputFile.txt nel quale trovate appunto i dati dell'oggetto mydata

mydata

```
→ viene ripristinato l'output alla Console di R sink()
```

2.11. Salvare i grafici di R in un file

```
→ create la cartella C: \R\;
→ salvate il file <u>OutputGrafici.csv</u>.
```

Eseguite il codice seguente:

dev.off() # genera un file jpeg (Joint Photographic Experts Group) jpeg("c:/R/ Filejpeg.jpg") boxplot(IgA~Diagnosi, data=mydata, main="IgA nelle malattie croniche del fegato", xlab="Diagnosi clinica", ylab="IgA in mg/dL", notch=FALSE, col="yellow") dev.off() # genera un file pdf (Portable Document Format) pdf("c:/R/ Filepdf.pdf") boxplot(IgA~Diagnosi, data=mydata, main="IgA nelle malattie croniche del fegato", xlab="Diagnosi clinica", ylab="lgA in mg/dL", notch=FALSE, col="yellow") dev.off() # genera un file png (Portable Network Graphics) png("c:/R/ Filepng.png") boxplot(IgA~Diagnosi, data=mydata, main="IgA nelle malattie croniche del fegato", xlab="Diagnosi clinica", ylab="IgA in mg/dL", notch=FALSE, col="yellow") dev.off() # genera un file ps (postscript) postscript("c:/R/ Fileps.ps") boxplot(IgA~Diagnosi, data=mydata, main="IgA nelle malattie croniche del fegato", xlab="Diagnosi clinica", ylab="IgA in mg/dL", notch=FALSE, col="yellow") dev.off() # genera un file wmf (Windows metafile) win.metafile("c:/R/ Filewmf.wmf") boxplot(IgA~Diagnosi, data=mydata, main="IgA nelle malattie croniche del fegato", xlab="Diagnosi clinica", ylab="IgA in mg/dL", notch=FALSE, col="yellow") dev.off()

Controllate infine che nella cartella C: \R\ compaiano i sei file generati dallo script. I grafici hanno qualità diversa, e questo può essere utile in relazione al diverso impiego che di essi si può fare.

2.12. L'interfaccia grafica (GUI) di R

Nonostante in questo manuale si faccia riferimento esclusivamente alla Console di R, non va dimenticato che R dispone anche di una interfaccia grafica (GUI, Graphic User Interface) che consente di utilizzare il linguaggio senza conoscerlo, semplicemente selezionando i comandi da una serie di menù. E che consente quindi all'utente di interagire con R con una interfaccia "evoluta", simile a quella degli altri programmi di statistica in ambiente Windows.

La GUI ufficiale di **R** è R Commander. Per installarla è necessario essere collegati a Internet, accedere ad uno dei CRAN e scaricare la libreria Rcmdr. Dato che questa libreria a sua volta si appoggia ad altre librerie, insieme a questa viene effettuato automaticamente il download e l'installazione di più pacchetti, tutti quelli tra loro concatenati e quindi necessariamente e contemporaneamente richiesti per garantire la funzionalità della libreria Rcmdr.

Una volta installato R Commander viene richiamato al bisogno sempre con il comando library(Rcmdr)

digitato il quale compare la sua interfaccia grafica (**Figura 2.6**). Per tutto quanto può essere utile si rimanda alla pagina di John Fox, l'autore del programma⁸.

⁸ <u>http://socserv.mcmaster.ca/jfox/misc/rcmdr/</u>

R Commander	
File Modifica Dati Statistiche Grafici Modelli Distribuzioni Strumenti Aiuto	
Set di dati: Constanti (Nessun set di dati attivo) Zedita i dati i Visualizza i dati	Modello: Z <nessun attivo="" modello=""></nessun>
Finestra dei comandi	
	<u>^</u>
	•
	Esegui
Finestra dei risultati	E E E E E E E E E E E E E E E E E E E
	Â
	▼
Messaggi	
[1] NOTA: Versione di R Commander 1.9-6: Tue May 28 22:34:33 2013	
[2] AVVERTIMENTO: La versione di R Commander per Windows funziona	meglio nella E
RGui con "single-document interface" (SDI); si veda ?Commander.	-
<	4

Figura 2.6 La finestra di R Commander, l'interfaccia grafica (GUI) di R.

Si rammenta una cosa molto importante riportata nella documentazione. Per funzionare propriamente sotto Windows, R Commander necessita della Single Document Interface (SDI). Per questo è necessario (ma solamente la prima volta) configurare l'avvio di **R** come segue:

 \rightarrow fare click con il tasto destro del mouse sull'icona di **R** che avete sul desktop;

→ scegliere Proprietà;

 \rightarrow selezionare la scheda Collegamento;

→ nel campo Destinazione dopo **Rgui.exe** aggiungere --sdi (aggiungere prima uno spazio quindi --sdi, in modo che la Destinazione risulti indicata come **Rgui.exe** --sdi).

2.13. Utilizzare i dati e gli script con MacOS X

Per i possessori di Mac utilizzare i dati e gli script qui riportati è fortunatamente molto semplice, basta ricordare due cose:

→ quando scaricate i file di dati, MacOS X li salva automaticamente nella cartella Download;

→ se nel codice che importa i dati in questo documento trovate scritto (ad esempio) mydata <read.table("c:/R/Statcorr.csv", header=TRUE, sep=";"), per il Mac dovete correggete il codice in mydata <read.table("Statcorr.csv", header=TRUE, sep=";") eliminando c:/R/ ovvero, in altre parole, lasciate all'interno delle virgolette solamente il nome del file.

Fatta questa modifica, è possibile eseguire il codice esattamente come riportato negli esempi.

3. R funzioni statistiche

Le funzioni statistiche di **R** sono trattate assumendo che abbiate familiarizzato adeguatamente con tutti gli argomenti generali contenuti nel capitolo 2. Le indicazioni qui riportate fanno riferimento alla versione di **R** per Windows. Per MacOS X vedere sempre nel capitolo 2 come utilizzare i dati e gli script con MacOS X.

Potete imparare a utilizzare le funzioni statistiche di R eseguendo il codice che trovate nelle pagine seguenti con i dati di esempio forniti come file .csv generati con Excel e OpenOffice.org Calc che devono essere scaricati e installati sul PC nella cartella C:\R\. Se li installate in una cartella diversa, dovete modificare opportunamente il codice **read.table("c:/R/** specificando il nuovo percorso nel quale avete installato i file. Per eseguire il codice **R** dovete semplicemente selezionarlo nella pagina web includendo il cancelletto # che chiude ogni blocco di codice, copiarlo, e incollarlo nella Console di R.

3.1. Test chi-quadrato (χ^2)

Nel caso delle scale nominali e delle scale ordinali esiste un solo modo per esprimere le osservazioni in modo quantitativo (numerico): contare gli eventi. Per verificare se un evento si verifica in due o più gruppi/categorie con la stessa frequenza, o con la frequenza prevista da un modello teorico, sono impiegati il test chi-quadrato o una delle sue varianti, il test di Fisher o il test di McNemar.

3.1.1. Test chi-quadrato quando sono note le frequenze teoriche (1 riga per n colonne)

La frequenza attesa di nuovi nati di sesso maschile e di sesso femminile è pari a 0.5 per entrambi i sessi. Tra i cariotipi eseguiti su liquido amniotico per diagnosi prenatale nell'arco di due mesi se ne sono osservati 487 di tipo maschile (XY) e 503 di tipo femmine (XX). Il numero di casi osservati è in linea con la frequenza attesa?

Copiate e incollate nella Console di R ed eseguite questo codice:

```
data: casi.osservati
X-squared = 0.2586, df = 1, p-value = 0.6111
```

In statistica ci si assume il rischio di considerare una differenza "significativa" quando la probabilità di osservarla per caso è bassa, in genere meno del 5% (p < 0.05). Il valore di p, che indica la probabilità di

osservare per caso una differenza quale quella effettivamente osservata (487 maschi e 503 femmine contro una frequenza attesa di 495 e 495 rispettivamente), è 0.6111: pertanto dobbiamo ritenere che la differenza osservata sia presumibilmente legata al caso, ovvero statisticamente "non significativa".

Per l'eredità di un carattere autosomico recessivo presente in entrambi i genitori (padre Aa e madre Aa) le quattro possibili combinazioni sono

e hanno frequenza pari a 0.25 (AA), 0.50 (Aa / Aa), 0.25 (aa). Da genitori entrambi Aa sono nati 85 figli AA, 173 Aa e 94 aa. Il numero di casi osservati è in linea con la frequenza attesa?

Copiate e incollate nella Console di R ed eseguite questo codice:

```
#
casi.osservati <- c(85,173,94) # sono immessi i casi osservati
freq.attese <- c(0.25,0.50,0.25) # sono immesse le frequenze attese</pre>
# il chi-quadrato viene calcolato e salvato nell'oggetto Chiquad
Chiquad <- chisq.test(casi.osservati, p = freq.attese)
Chiquad$observed # mostra le frequenze osservate
Chiquad$expected # mostra le frequenze attese
Chiquad # mostra i risultati del test chi-quadrato
#
Dopo avere mostrato le tre frequenze osservate (Chiquad$observed)
[1] 85 173
                 94
e le tre frequenze attese (Chiquad$expected)
[1]
     88 176
                88
nella Console di R viene mostrato il risultato del test chi-quadrato (Chiquad) precedentemente
calcolato:
          Chi-squared test for given probabilities
data: casi.osservati
X-squared = 0.5625, df = 2, p-value = 0.7548
```

Il valore di p, che indica la probabilità di osservare per caso una differenza quale quella effettivamente osservata (85 omozigoti **AA** osservati contro 88 attesi, 173 eterozigoti **Aa** osservati contro 176 attesi, 94 omozigoti **aa** osservati contro 88 attesi), in questo caso è 0.7548. Anche questa volta la probabilità di osservare per caso una differenza quale quella effettivamente osservata è molto elevata, al punto che dobbiamo ritenere la differenza osservata presumibilmente legata al caso, ovvero statisticamente "non significativa".

Il codice **R** che segue riprende gli stessi identici dati con un codice semplificato, calcolando però questa volta il valore di p sia nel modo tradizionale, con la distribuzione teorica di chi-quadrato, sia con il metodo Monte Carlo. Ho preparato una breve illustrazione del concetto che sta alla base del metodo Monte Carlo⁹ in quanto lo troverete poi applicato in varie altre situazioni. Copiate e incollate nella Console di R questo codice ed eseguitelo:

Statistica con ${f R}$ per il laboratorio di analisi cliniche - ver 1.0

⁹ <u>http://www.bayes.it/pdf/MetodoMonteCarlo.pdf</u>

#

```
casi.osservati <- c(85,173,94) # sono immessi i casi osservati
freq.attese <- c(0.25,0.50,0.25) # sono immesse le frequenze attese
# chi-quadrato, p calcolato dalla distribuzione teorica di chi-quadrato
chisq.test(casi.osservati, p = freq.attese)
# chi-quadrato, p calcolato mediante una simulazione Monte Carlo con 10000 replicati
chisq.test(casi.osservati, p = freq.attese, simulate.p.value = TRUE, B = 10000)
#
Dopo avere immesso i dati (prime due righe) viene calcolato e mostrato nella Console
```

Dopo avere immesso i dati (prime due righe) viene calcolato e mostrato nella Console di R il risultato del test chi-quadrato (chisq.test) con il valore di p calcolato in base alla distribuzione di probabilità teorica chi-quadrato:

Chi-squared test for given probabilities

```
data: casi.osservati
X-squared = 0.5625, df = 2, p-value = 0.7548
```

Nella successiva e ultima riga di codice viene calcolato e mostrato nella Console di R il risultato del test chi-quadrato (chisq.test) con il valore di p calcolato mediante una simulazione Monte Carlo:

```
Chi-squared test for given probabilities with simulated p-value (based on 10000 replicates)
```

```
data: casi.osservati
X-squared = 0.5625, df = NA, p-value = 0.7698
```

Come potete constatare le conclusioni con i due approcci sono quasi identiche.

3.1.2. Test per una tabella di 2 righe x 2 colonne: test chi-quadrato, test di Fisher, test di McNemar

Il principio che vale per le tabelle nelle quali le osservazioni sono organizzate in 2 righe e 2 colonne è il seguente:

 \rightarrow si utilizza il test chi-quadrato quando le osservazioni sono <u>numerose</u> e sono <u>indipendenti</u>;

 \rightarrow si utilizza il test di Fisher quando sono le osservazioni <u>non sono numerose</u>:

 \rightarrow si utilizza il test di McNemar quando le osservazioni <u>non sono indipendenti</u> (dati appaiati).

Il **test chi-quadrato** viene applicato ai dati relativi alla presenza o assenza di emolisi, rispetto ad un valore soglia prefissato, utilizzando due sistemi di prelievo (A e B), in situazioni di estrema difficoltà del prelievo venoso. Impiegando il sistema A si sono osservati 68 casi di emolisi su 109 prelievi (pari al 62.4%). Impiegando il sistema B si sono osservati 93 casi di emolisi su 125 prelievi (pari al 74.4%).

Ci si chiede se il numero di casi di emolisi osservati con l'uno e l'altro sistema di prelievo sia significativamente diverso. Le osservazioni riguardano in totale 234 differenti prelievi e altrettanti campioni di sangue, sono numerose e sono indipendenti.

I dati sono stati raccolti in questa tabella:

Prelievo	Emolisi_no	Emolisi_si
Sistema A	41	68
Sistema B	32	93

Scaricate e salvate nella cartella C: $R \in Chiquad 2x2.csv$. Quindi copiate e incollate nella Console di R ed eseguite questo codice:

```
# con la prima riga sono importati i dati
mydata <- read.table("c:/R/Chiquad_2x2.csv", header=TRUE, sep=";", row.names="Prelievo")
# i dati sono mostrati nella Console di R
mydata
# test chi quadrato con la correzione di Yates
chisq.test(mydata, correct=TRUE)
# test chi quadrato senza la correzione di Yates
chisq.test(mydata, correct=FALSE)
#
Il test chi-quadrato con 1 grado di libertà è esatto solo asintoticamente per dimensioni molto grandi dei
campioni pertanto nell'esempio riportato sopra viene applicata la correzione di Yates per la continuità
(correct = TRUE) ottenendo p = 0.06615 (differenza non significativa assumendo la soglia di
```

```
significatività p = 0.05):
```

Pearson's Chi-squared test with Yates' continuity correction

```
data: mydata
X-squared = 3.3761, df = 1, p-value = 0.06615
```

Da notare che senza la correzione di Yates per la continuità (correct = FALSE) si potrebbe pensare ad una differenza significativa (p = 0.04783):

Pearson's Chi-squared test

```
data: mydata
X-squared = 3.9159, df = 1, p-value = 0.04783
```

In genere si consiglia di utilizzare il test di Fisher quando:

 \rightarrow il totale delle osservazioni è inferiore a 20 *oppure*

 \rightarrow in una delle celle abbiamo un valore osservato inferiore a 10 oppure

 \rightarrow in una delle celle abbiamo un valore atteso inferiore a 5.

Nel caso della valutazione di un test diagnostico per una malattia rara è stato possibile reclutare solamente 7 malati. Sono conseguentemente stati reclutati altrettanti soggetti sani di controllo. IL test risultava positivo in 3 malati e negativo in 4 malati. Era invece negativo in 6 e positivo solamente in 1 dei soggetti sani. Il numero di osservazioni era quindi molto ridotto di osservazioni e ricorrevano addirittura tutte e tre le condizioni per l'utilizzo del test di Fisher indicate sopra. I dati sono stati raccolti in questa tabella:

Esito	Sano	Malato
Test positivo	1	3
Test negativo	6	4

Scaricate e salvate nella cartella $C: R \in \underline{R}$ il file <u>Fisher 2x2.csv</u> che contiene i dati. Quindi copiate e incollate nella Console di R ed eseguite questo codice:

con la prima riga sono importati i dati
mydata <- read.table("c:/R/Fisher_2x2.csv", header=TRUE, sep=";", row.names="Esito")
i dati sono mostrati nella Console di R
mydata
esegue il test di Fisher
fisher.test(mydata)
#
Ecco il risultato del test di Fisher come compare nella Console di R:</pre>

Fisher's Exact Test for Count Data

```
data: mydata
p-value = 0.5594
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
    0.003646918 4.442542966
sample estimates:
    odds ratio
    0.2480182
```

Il valore di p = 0.5594 conferma l'esistenza di una differenza non significativa. In questo caso viene testata anche l'ipotesi che l'odd ratio sia diverso da 1. Se i limiti di confidenza dell'odd ratio includono il valore 1, la differenza non è significativa. Qui abbiamo un odd ratio di 0.2480182 i cui limiti di confidenza al 95% vanno da 0.003646918 a 4.442542966 e che quindi includono il valore 1. La conclusione è evidente: se questa è l'incertezza delle nostre conclusioni, incertezza che include il valore 1, dobbiamo dedurne ancora una volta che la differenza tra gli esiti osservata non è significativa. Va da sé che trarre conclusioni da un numero così ridotto di osservazioni è comunque una pratica possibilmente da evitare.

Il **test di McNemar** viene applicato quando le osservazioni non sono indipendenti. Un caso tipico è quello di 200 pazienti quali prima di un trattamento è stato effettuato un test diagnostico, che poteva risultare positivo o negativo. Tutti i 200 pazienti sono stati successivamente sottoposti ad un trattamento terapeutico al termine del quale il test è stato ripetuto. Dei 120 pazienti cui il test è risultato positivo prima del trattamento, dopo il trattamento 90 sono risultati positivi al test e 30 sono risultati negativi al test. Degli 80 pazienti cui il test è risultato negativo prima del trattamento, dopo il trattamento 20 sono risultati positivi al test e 60 sono risultati negativi al test. I dati sono stati raccolti in questa tabella:

Esito	Dopo positivo	Dopo negativo	
Prima positivo	90	30	
Prima negativo	20	60	

Scaricate e salvate nella cartella $C:\R\$ il file <u>McNemar 2x2.csv</u> che contiene i dati. Quindi copiate e incollate nella Console di R ed eseguite questo codice:

con la prima riga sono importati i dati

```
mydata <- read.table("c:/R/McNemar_2x2.csv", header=TRUE, sep=";", row.names="Esito")
# viene generato un oggetto matrice contenente i dati per esigenze delle funzioni successive
matrix <- data.matrix(mydata)
# i dati sono mostrati nella Console di R
matrix
# esegue il test di McNemar
mcnemar.test(matrix, correct=TRUE)
# l'analisi dei dati viene arricchita con un grafico a barre
barplot(t(matrix), beside=TRUE, legend=TRUE, ylim=c(0,200), col=c("darkblue","red"), ylab="Frequenze
osservate nel campione", xlab="Esito prima del trattamento", main="Esito del trattamento in 200
soggetti")
#
Eccco il risultato del test di McNemar come compare nella Console di R:</pre>
```

McNemar's Chi-squared test with continuity correction

data: matrix
McNemar's chi-squared = 1.62, df = 1, p-value = 0.2031

Il valore di p = 0.2031 conferma l'esistenza di una differenza non significativa. La rappresentazione dei dati

sotto forma di un grafico a barre ci aiuta nella sintesi e nella interpretazione dei risultati del test di McNemar (Figura 3.1).

Figura 3.1 Grafico a barre dei dati sottoposti al test di McNemar in quanto si trattava di dati appaiati (esito di un test, positvo o negativo, negli stessi 200 soggetti prima e dopo uno specifico trattamento).

3.1.3. Test chi-quadrato per tabelle di contingenza (r righe per c colonne)

Il test chi-quadrato per una tabella di contingenza di **r** righe per **c** colonne è la forma più generalizzata del test.

Cinque terreni di coltura selettivi per lo *Streptococcus pyogenes* sono stati provati al fine di valutare la loro capacità di fornire un isolamento selettivo delle colonie dopo la semina di un tampone rinofaringeo. L'esito di ciascuna prova è stato registrato, e i risultati sono stati raccolti in questa tabella:

Esito	Terreno_A	Terreno_B	Terreno_C	Terreno_D	Terreno_E
Isolamento no	39	44	20	41	42
Isolamento si	177	166	200	183	168

Scaricate e salvate nella cartella C:\R\ il file <u>Chiquad rxc.csv</u> che contiene i dati. Quindi copiate e incollate nella Console di R ed eseguite questo codice:

con la prima riga sono importati i dati

```
mydata <- read.table("c:/R/Chi_rxc.csv", header=TRUE, sep=";", row.names="Esito")
# calcola il chi-quadrato
chisq.test(mydata)
# ricalcola p mediante una simulazione Monte Carlo con un milione di replicati
chisq.test(mydata, simulate.p.value = TRUE, B = 1000000)</pre>
```

#

Dopo avere importato i dati (prima riga di codice), con la seconda riga di codice viene calcolato il test chiquadrato con il valore di p determinato a partire dalla distribuzione teorica di chi-quadrato:

Pearson's Chi-squared test

data: mydata
X-squared = 13.6785, df = 4, p-value = 0.008395

Con la terza riga di codice viene nuovamente calcolato il test chi-quadrato: questa volta però il valore di p viene calcolato con il metodo Monte Carlo utilizzando un milione di replicati:

Pearson's Chi-squared test with simulated p-value (based on 1e+06 replicates)

```
data: mydata
X-squared = 13.6785, df = NA, p-value = 0.008293
```

Il valore di p corrispondente alla statistica chi-quadrato (χ^2) rappresenta la probabilità di osservare per caso una differenza tra frequenze osservate e frequenze attese della grandezza di quella effettivamente osservato: se tale probabilità è sufficientemente piccola, si conclude per una differenza significativa di incidenza nei diversi gruppi dell'esito della prova (isolamento si / isolamento no). In questo caso la probabilità di osservare per caso una differenza tra frequenze osservate e frequenze attese della grandezza di quella effettivamente osservata è dell'ordine dell'8 per mille (0.008293). Possiamo concludere che la differenza non sia presumibilmente dovuta al caso, ovvero che sia statisticamente significativa.

Ma a quale terreno va imputata la differenza osservata?

In casi i questo genere può essere utile integrare il risultato numerico con una rappresentazione grafica dei dati utilizzati per calcolare il chi-quadrato. Con il codice **R** che segue proviamo a farlo sotto forma di un grafico a barre:

con la prima riga sono importati i dati mydata <- read.table("c:/R/Chiquad_rxc.csv", header=TRUE, sep=";", row.names="Esito") # viene generato un oggetto matrice contenente i dati per esigenze delle funzioni successive matrix <- data.matrix(mydata) # l'analisi dei dati viene arricchita con un grafico a barre utile per una sintesi dei risultati barplot(t(matrix), beside=TRUE, legend=TRUE, ylim=c(0,300), col=c("red","orange", "yellow", "green", "skyblue"), ylab="Frequenze osservate", xlab="Esito della coltura in termini di isolamento delle colonie", main="Valutazione dell'isolamento di Streptococcus pyogenes")

In effetti il grafico a barre ci aiuta a individuare nel terreno C quello che consente di avere il migliore isolamento delle colonie (**Figura 3.2**).

La conferma numerica del dato è ulteriormente suffragata viene da una tabella nella quale, utilizzando le funzioni più elementari di Excel e OpenOffice Calc, a partire dai dati originali sopra riportati e contenuti nel file Chiquad_rxc.csv, sono stati calcolati i valori percentuali di successo (isolamento si) e di insuccesso (isolamento no) per ciascun terreno:

Esito	Terreno_A	Terreno_B	Terreno_C	Terreno_D	Terreno_E
Isolamento no	18.1	21.0	9.1	18.3	20.0
Isolamento si	81.9	79.0	90.9	81.7	80.0

La conclusione è che il terreno di coltura C fornisce una percentuale di isolamento delle colonie del 91% circa, che risulta quindi essere la migliore rispetto a quella di tutti gli altri terreni, e che con lo stesso terreno di coltura C si osserva una percentuale di insuccessi del 9% circa, che risulta inferiore a quella di tutti gli altri terreni.

Figura 3.2 Grafico a barre dei dati sottoposti al test chi-quadrato (capacita da parte di 5 diversi terreni di coltura di fornire colonie isolate di Streptococcus pyogenes). Il terreno C è quello che fornisce i migliori risultati.

3.2. Statistiche elementari

Scaricate e salvate nella cartella C:\R\ il file <u>Trigliceridi.csv</u>. Contiene la concentrazione nel siero dei trigliceridi (espressi in mg/dL) in 1000 soggetti, scelti a caso tra i pazienti che hanno effettuano ambulatoriamente questa insieme ad altre analisi di laboratorio. I risultati sono contenuti nella variabile Trigliceridi a sua volta contenuta nel file Trigliceridi.csv.

Ora copiate e incollate nella Console di R ed eseguite questo codice:

```
# con la prima riga sono importati i dati
mydata <- read.table("c:/R/Trigliceridi.csv", header=TRUE, sep=";")
attach(mydata) # consente di effettuare i calcoli utilizzando direttamente il nome della variabile
mean(Trigliceridi) # calcola la media
sd(Trigliceridi) # calcola la deviazione standard
#
Le conclusioni tratte con R sono:
> mean(Trigliceridi) # calcola la media
[1] 136.509
> sd(Trigliceridi) # calcola la deviazione standard
[1] 92.76759
```

Dopo avere analizzato statisticamente i dati, riassumiamo le conclusioni che abbiamo attenuto a un nostro amico, comunicandogli questa informazione: "Abbiamo verificato che in 1000 soggetti, scelti a caso tra i pazienti che effettuano ambulatoriamente analisi di laboratorio, la concentrazione media dei trigliceridi era 136.509 mg/dL, con una deviazione standard (ds) di 92.76759 mg/dL". Quale conclusione il nostro amico può dedurre dai dati che gli abbiamo fornito?

Il nostro amico sa che in base alle proprietà della distribuzione gaussiana tra la media – 1.96 d.s. e la media + 1.96 d.s. si deve trovare il 95% dei dati campionari. Prende il valore della media (136.509 mg/dL), prende il valore della deviazione standard (92.76759 mg/dL) e lo moltiplica per 1.96 ottenendo 181.8244764. Da questo il nostro amico deduce che il 95% dei valori misurati (dopo arrotondamento dei risultati a una cifra decimale) cadeva nell'intervallo

136.5±181.8 mg/dL

e pertanto conclude che una certa quota dei nostri pazienti aveva valori negativi della concentrazione nel siero dei trigliceridi (visto che 136.5 – 181.4 = - 45.3). Tuttavia, prima di pubblicare questa rivoluzionaria conclusione, la prudenza impone un riesame dei risultati effettivamente ottenuti: e il riesame dei dati (aprite il file Trigliceridi.csv con Excel o OpenOffice Calc) dimostra che, ovviamente, nessuno dei valori misurati era inferiore a zero. Un evidente paradosso biologico non porta ad una rivoluzionaria conclusione, ma più semplicemente consente di individuare un grave errore nel dare forma ai dati: calcolando media e deviazione standard è stata (implicitamente) data forma gaussiana a dati che non sono distribuiti in modo gaussiano.

La media e la deviazione standard possono essere utilizzate solamente nel caso in cui i dati seguono una distribuzione gaussiana. Poiché media e deviazione standard sono i "parametri" che descrivono una distribuzione gaussiana, i metodi statistici che fanno ricorso ad assunti preliminari di gaussianità dei dati sono detti "metodi parametrici", in contrapposizione a quelli che non sono basati su assunti specifici riguardanti la distribuzione, che sono detti "metodi non parametrici". Nell'ambito delle statistiche elementari viene dato ampio spazio ai test che consentono di verificare se i dati sono distribuiti in modo gaussiano. Se i dati non sono distribuiti in modo gaussiano è necessario utilizzare test statistici non parametrici. Altrimenti si può arrivare a conclusioni grottesche come quelle riportate sopra. Nel caso delle statistiche elementari, l'alternativa non parametrica a media e deviazione standard è rappresentata dalla mediana, dalla distanza interquartile e dai quantili (o frattili) non parametrici. Tuttavia test non parametrici sono disponibili, oltre che per le statistiche elementari, anche per il confronto tra metodi e per la regressione lineare, come vedremo trattando questi argomenti.

3.2.1. Verifica della gaussianità dei dati.

Scaricate e salvate nella cartella $C: R \$ il file <u>Statelem.csv</u>. Nella prima riga sono riportati i nomi delle variabili, nelle successive i dati, relativi a quasi settemila casi per quali erano disponibili sesso, età, e i valori di colesterolo, colesterolo HDL, colesterolo LDL e trigliceridi (nel siero, in mg/dL). Come si vede alcuni dati possono mancare (nel secondo caso mancano i risultati di colesterolo LDL e trigliceridi, nel terzo caso manca il risultato del colesterolo LDL, e altri valori mancano nei casi successivi).

Sesso	Eta	Colesterolo	HDL	LDL	Trigliceridi
М	33	56	44	9	19
М	62	60	5		
F	90	70	30		99
М	75	80	53		
F	32	82	51		23
М	71	84	25		
F	86	89			
F	64	91	35		88

Copiate e incollate nella Console di R il codice che segue per analizzare la variabile Colesterolo. Fatelo una riga alla volta soffermandovi sui singoli passaggi per familiarizzare con il linguaggio. Da notare che viene utilizzata la libreria **nortest** che, se non lo avete ancora fatto, dovete scaricare dal CRAN (in caso contrario si verificherà un errore nell'esecuzione del codice laddove è previsto l'utilizzo della libreria).

con la prima riga sono importati i dati
mydata <- read.table("c:/R/Statelem.csv", header=TRUE, sep=";")
nome delle variabili contenute in mydata
names(mydata)
struttura dell'oggetto mydata</pre>

str(mydata) # lista dei primi 10 casi di mydata head(mydata, n=10) # lista degli ultimi 5 casi di mydata tail(mydata, n=5) # mostra i casi con dati NA (Not Available) mydata[!complete.cases(mydata),] # crea un nuovo oggetto denominato newdata omettendo i casi con dati NA newdata <- na.omit(mydata)</pre> # crea un oggetto denominato newdataset che include solamente le colonne da 2 a 6 con le variabili quantitative newdataset <- newdata[c(2,3,4,5,6)]</pre> # struttura di newdataset str(newdataset) # crea un vettore che contiene i dati della variabile "Colesterolo" avector <- newdataset[, "Colesterolo"]</pre> # apre la libreria nortest che contiene vari test di gaussianità library(nortest) # test di Anderson-Darling ad.test(avector) # test di Cramer-von Mises cvm.test(avector) # test di Lilliefors (Kolmogorov-Smirnov) lillie.test(avector) # test chi-quadrato di Pearson pearson.test(avector) # test di Shapiro-Francia sf.test(avector) # traccia un istogramma dei dati hist(avector, main="Istogramma dei dati osservati", xlab="Colesterolo totale in mg/dL", ylab = "Frequenza") # traccia la distribuzione di densità dei dati windows() # apre una nuova finestra plot(density(avector), main="Distribuzione di densità dei dati osservati", xlab="Colesterolo totale in mg/dL", ylab = "Frequenza") # traccia la distribuzione cumulativa empirica dei dati windows() # apre una nuova finestra plot(ecdf(avector), main="Distribuzione cumulativa empirica dei dati", xlab="Colesterolo totale in mg/dL", ylab = "Frequenza cumulativa") # traccia il grafico che mostra l'adeguatezza dei dati a una distribuzione gaussiana windows() # apre una nuova finestra zetavector<-(avector-mean(avector))/sd(avector) # calcola la deviata normale standardizzata qqnorm((zetavector), main="Quantili campionari vs. quantili teorici", xlab="Quantili teorici", ylab = "Quantili campionari") # grafico dei quantili campionari vs. quantili teorici abline (0,1) # retta a 45 gradi di riferimento # A questo punto, dato che con le tre istruzioni windows() avete aperto tre nuove finestre, avrete un totale

di quattro finestre, con altrettanti grafici, sovrapposte. Spostate o iconizzate la finestra dell'ultimo grafico per vedere la finestra con il grafico precedente, e così via. Infine utilizzate i tasti Pag-su e Pag-giù per scorrere nella finestra della Console di R il codice eseguito e leggerne i risultati.

I test di gaussianità concordano tutti sul fatto che i valori del Colesterolo non sono distribuiti in modo gaussiano. La probabilità di osservare per caso uno scostamento dalla distribuzione gaussiana dell'entità di

quello osservato per il colesterolo è molto bassa (p variabile con i vari test, ma sempre almeno inferiore a 0.001), quindi lo scostamento della distribuzione del colesterolo dalla distribuzione gaussiana è da ritenersi statisticamente significativo. Ecco il risultato dei singoli test:

```
> ad.test(avector)
        Anderson-Darling normality test
     avector
data:
A = 2.0806, p-value = 2.733e-05
> cvm.test(avector)
        Cramer-von Mises normality test
data: avector
W = 0.321, p-value = 0.0001917
> lillie.test(avector)
        Lilliefors (Kolmogorov-Smirnov) normality test
data: avector
D = 0.0287, p-value = 9.183e-05
> pearson.test(avector)
        Pearson chi-square normality test
data: avector
P = 83.9086, p-value = 0.0001891
> sf.test(avector)
        Shapiro-Francia normality test
data: avector
W = 0.9931, p-value = 8.518e-09
```

Ecco ora un secondo esempio che ripete le stesse cose con un codice più compatto e più semplice sulla variabile Trigliceridi che presenta una asimmetria molto marcata con una lunghissima coda sulla destra, ben documentata nei grafi che sono prodotti:

```
# con la prima riga sono importati i dati
mydata <- read.table("c:/R/Verigauss.csv", header=TRUE, sep=";")
# elimina i casi con dati mancanti
newdata <- na.omit(mydata)
# carica la libreria necessaria
library(nortest)
# calcola i vari test statistici
ad.test(newdata$Trigliceridi)
cvm.test(newdata$Trigliceridi)
lillie.test(newdata$Trigliceridi)
pearson.test(newdata$Trigliceridi)</pre>
```

sf.test(newdata\$Trigliceridi)

traccia un semplice istogramma

hist(newdata\$Trigliceridi, main="Istogramma dei dati osservati", xlab="Trigliceridi in mg/dL", ylab = "Frequenza")

traccia il kernel density plot

windows() # apre una nuova finestra

plot(density(newdata\$Trigliceridi), main="Distribuzione di densità dei dati osservati", xlab="Trigliceridi in mg/dL", ylab = "Frequenza")

funzione di distribuzione cumulativa empirica (osservata) dei dati

windows() # apre una nuova finestra

plot(ecdf(newdata\$Trigliceridi), main="Distribuzione cumulativa empirica dei dati", xlab="Trigliceridi in mg/dL", ylab = "Frequenza cumulativa")

confronta i quantili campionari (punti) con i quantili teorici (retta)

windows() # apre una nuova finestra

zetavector<-(newdata\$Trigliceridi-mean(newdata\$Trigliceridi))/sd(newdata\$Trigliceridi)

qqnorm((zetavector), main="Quantili campionari vs. quantili teorici", xlab="Quantili teorici", ylab = "Quantili campionari")

abline (0,1)

#

I risultati dell'analisi grafica sono oltremodo interessanti (Figura 3.3)

Figura 3.3 Analisi grafica della distribuzione della concentrazione dei trigliceridi nel siero. Istogramma, kernel density plot e quantili campionari confrontati con i quantili di una distribuzione gaussiana teorica, danno evidenza della forte asimmetria della distribuzione che pertanto non è gaussiana.

Anche in questo caso, dato che con le tre istruzioni **windows()** avete aperto tre nuove finestre, avrete un totale di quattro finestre, con altrettanti grafici, sovrapposte. Spostate o iconizzate la finestra dell'ultimo

grafico per vedere la finestra con il grafico precedente, e così via.

Sia l'istogramma, sia la distribuzione di densità dei dati, sia la retta dei quantili teorici sulla quale dovrebbero essere allineati i quantili campionari qualora la distribuzione fosse gaussiana, forniscono una chiara evidenza del fatto che i valori dei Trigliceridi non sono distribuiti in modo gaussiano. E rappresentano una conferma dei vari test statistici eseguiti, i cui risultati erano i seguenti:

```
> ad.test(newdata$Trigliceridi)
        Anderson-Darling normality test
data: newdata$Trigliceridi
A = Inf, p-value = NA
> cvm.test(newdata$Trigliceridi)
        Cramer-von Mises normality test
data: newdata$Trigliceridi
W = 19.6163, p-value = 7.37e-10
Warning message:
In cvm.test(newdata$Trigliceridi) :
 p-value is smaller than 7.37e-10, cannot be computed more accurately
> lillie.test(newdata$Trigliceridi)
        Lilliefors (Kolmogorov-Smirnov) normality test
data: newdata$Trigliceridi
D = 0.1423, p-value < 2.2e-16
> pearson.test(newdata$Trigliceridi)
        Pearson chi-square normality test
data: newdata$Trigliceridi
P = 1001.822, p-value < 2.2e-16
> sf.test(newdata$Trigliceridi)
        Shapiro-Francia normality test
data: newdata$Trigliceridi
W = 0.73, p-value < 2.2e-16
```

Lo scostamento della distribuzione dei trigliceridi dalla distribuzione gaussiana è talmente consistente che il test di Anderson-Darling non è computabile, e il test di Cramer-von Mises riporta il valore di p semplicemente come "inferiore al valore minimo computabile". La probabilità di osservare per caso uno scostamento dalla distribuzione gaussiana dell'entità di quello osservato per i trigliceridi è molto bassa, con p variabile con i vari test, ma sempre almeno inferiore a 0.00000001. La distribuzione dei trigliceridi dista anni luce da una distribuzione gaussiana.

Per la documentazione dell'apparato teorico matematico-statistico che sta dietro a ciascuno dei test utilizzati si rimanda alla documentazione sul web.

3.2.2. Statistiche esplorative (misure di posizione, misure di dispersione, quantili)

Scaricate e salvate nella cartella C:\R\ il file <u>Statelem.csv</u>. Il file contiene gli stessi dati utilizzati per la precedente verifica della gaussianità.

Da notare che nel codice che segue sono impiegate le librerie **Hmisch, pastsecs** e **psych** che dovete scaricare dal CRAN prima di eseguirlo (in caso contrario si verificherà un errore nell'esecuzione del codice laddove è previsto l'utilizzo delle librerie). Copiate e incollate nella Console di R il codice ed eseguitelo una riga alla volta per familiarizzare con il linguaggio soffermandovi sui singoli passaggi:

con la prima riga sono importati i dati mydata <- read.table("c:/R/Statelem.csv", header=TRUE, sep=";") # nome delle variabili contenute in mydata names(mydata) # struttura dell'oggetto mydata str(mydata) # lista dei primi 10 casi di mydata head(mydata, n=10) # lista degli ultimi 5 casi di mydata tail(mydata, n=5) # mostra i casi con dati NA (Not Available) mydata[!complete.cases(mydata),] # crea un nuovo oggetto denominato newdata omettendo i casi con dati NA newdata <- na.omit(mydata)</pre> # crea un oggetto denominato newdataset che include solamente le colonne da 2 a 6 con le variabili quantitative newdataset <- newdata[c(2,3,4,5,6)]</pre> # calcola la media del colesterolo LDL su mydata attach(mydata) mean(LDL) # da notare che R restituisce NA anche per la media mean(LDL, na.rm=TRUE) # rimuovendo i dati NA questa volta R restituisce il valore della media # è ora facile calcolare le altre principali statistiche del colesterolo LDL su mydata var(LDL, na.rm=TRUE) # calcola la varianza sd(LDL, na.rm=TRUE) # calcola la deviazione standard min(LDL, na.rm=TRUE) # calcola il valore minimo max(LDL, na.rm=TRUE) # calcola il valore massimo range(LDL, na.rm=TRUE) # calcola il range quantile(LDL, probs = seq (0, 1, 0.25), na.rm=TRUE) # calcola i quartili, sostituendo in seq() il valore 0.25 con 0.10 calcola i decili, eccetera... # con sapply si calcolano le statiche di tutte le variabili (questa volta su newdataset, nel quale sono inclusi solamente i dati completi, e dal quale è stata esclusa la variabile qualitativa Sesso) sapply(newdataset, mean) # calcola la media sapply(newdataset, sd) # calcola la deviazione standard sapply(newdataset, var) # calcola la varianza sapply(newdataset, min) # calcola il valore minimo sapply(newdataset, max) # calcola il valore massimo sapply(newdataset, range) # calcola il range sapply(newdataset, median) # calcola la mediana sapply(newdataset, quantile) # calcola i quartili # se volete avere rapidamente le statistiche sintetiche di mydata summary(mydata) # gueste sono le statistiche che potete ottenere utilizzando la libreria Hmisc library(Hmisc)
```
describe(mydata)
# queste sono le statistiche che potete ottenere utilizzando la libreria pastecs
library(pastecs)
stat.desc(mydata)
# queste sono le statistiche che potete ottenere utilizzando la libreria psych
library(psych)
describe(mydata)
#
```

Come si vede nella prima parte del codice è possibile calcolare le statistiche una per una per ciascuna variabile, come ad esempio con le funzioni min(), max(), range().

Guardiamo ora in particolare la riga di codice utilizzata per calcolare i quartili del colesterolo LDL e cosa accade eseguendola:

Nella riga superiore sono state tabulate le etichette che indicano il valore minimo (0%), il valore massimo (100%), il primo quartile (25%), il secondo quartile (50% ovvero la mediana), e il terzo quartile (75%), nella riga inferiore sono stati tabulati i valori di colesterolo LDL (in mg/dL) corrispondenti.

Sostituendo in seq() il valore 0.25 con 0.1 potete calcolare i decili:

>	quant	tile(L	DL, pı	cobs =	seq ((), 1, ().1), ı	na.rm=[FRUE)		
	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
	9.0	83.0	96.0	106.0	115.0	123.5	133.0	142.0	154.0	168.0	292.0

Sostituendo in seq() il valore 0.1 con 0.01 potete calcolare i percentili:

> quan	tile(L	DL, pro	obs = s	eq (0,	1, 0.0)1), na	.rm=TRU	JE)		
0%	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%
9.00	54.00	63.46	68.00	71.00	73.00	75.00	76.11	79.00	81.00	83.00
11%	12%	13%	14%	15%	16%	17%	18%	19%	20%	21%
84.00	86.00	87.00	88.00	90.00	91.00	93.00	94.00	95.00	96.00	97.00
22%	23%	24%	25%	26%	27%	28%	29%	30%	31%	32%
98.00	98.00	100.00	100.25	101.00	102.00	103.44	105.00	106.00	107.00	107.00
33%	34%	35%	36%	37%	38%	39%	40%	41%	42%	43%
108.00	109.00	110.00	111.00	112.00	113.00	114.00	115.00	115.00	116.00	117.00
44%	45%	46%	47%	48%	49%	50%	51%	52%	53%	54%
118.00	119.00	120.00	121.00	122.00	123.00	123.50	124.23	125.00	127.00	127.00
55%	56%	57%	58%	59%	60%	61%	62%	63%	64%	65%
128.00	129.00	130.00	131.00	132.00	133.00	134.00	135.00	135.99	136.00	137.00
66%	67%	68%	69%	70%	71%	72%	73%	74%	75%	76%
138.00	140.00	140.00	142.00	142.00	143.00	144.00	145.00	146.02	147.00	148.00
77%	78%	79%	80%	81%	82%	83%	84%	85%	86%	87%
150.00	151.00	152.67	154.00	155.00	156.00	157.00	159.00	161.00	162.00	163.00
888	89%	90%	91%	92%	93%	94%	95%	96%	97%	98%
165.00	167.00	168.00	171.00	173.00	175.00	179.00	182.00	186.00	192.00	200.00
99%	100	00								
213.27	292.0	0								

Cambiando semplicemente il nome della variabile, è possibile effettuare il calcolo dei quartili sui trigliceridi:

> quantile(Trigliceridi, probs = seq (0, 1, 0.25), na.rm=TRUE)

0% 25% 50% 75% 100% 19 75 102 139 1248

```
o ancora sul colesterolo HDL:
```

```
> quantile(HDL, probs = seq (0, 1, 0.25), na.rm=TRUE)
    0% 25% 50% 75% 100%
    5 50 60 73 146
```

Questo è anche un buon esempio di come il codice fornito possa essere facilmente riutilizzato per adattarlo ai propri dati.

Ma come si vede è anche possibile calcolare una singola statistica su tutte le variabili contemporaneamente con la funzione **sapply()**.

Infine le librerie **Hmisch**, **pastsecs** e **psych** forniscono automaticamente un riepilogo complessivo delle principali statistiche di tutte le variabili. Da notare che nel riepilogo fornito dalla libreria **psych** la colonna mad riporta il valore della "median absolute deviation", cioè la mediana delle deviazioni assolute dalla mediana, che è l'equivalente non parametrico della deviazione standard.

	var	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
Sesso*	1	6787	1.43	0.49	1.0	1.41	0.00	1	2	1	0.30	-1.91	0.01
Eta	2	6787	59.01	17.66	62.0	59.89	19.27	3	104	101	-0.41	-0.45	0.21
Colesterolo	3	6787	208.74	42.33	207.0	207.85	41.51	56	435	379	0.27	0.44	0.51
HDL	4	5918	62.15	17.41	60.0	61.19	17.79	5	146	141	0.55	0.38	0.23
LDL	5	2874	125.17	34.04	123.5	124.22	34.84	9	292	283	0.33	0.29	0.64
Trigliceridi	6	5625	117.88	73.88	102.0	106.91	45.96	19	1248	1229	4.11	33.09	0.99

In una distribuzione perfettamente gaussiana la media coincide con la mediana, e la deviazione standard coincide con la mad. Tanto più i dati si discostano da una distribuzione gaussiana, tanto più la media differisce dalla mediana e/o tanto più la deviazione standard differisce dalla mad: questo avviene nel caso dei trigliceridi, che abbiamo visto in precedenza essere distribuiti in modo grossolanamente non gaussiano. Il fatto che si tratti di una distribuzione non gaussiana è confermato anche dal valore del coefficiente di asimmetria (skew) e del coefficiente di curtosi (kurtosis).

3.3. Confronto tra medie

Il confronto tra medie può essere effettuato sia nel caso di campioni indipendenti sia nel caso di dati appaiati. Accanto alla versione tradizionale parametrica, rappresentata dal test t di Student, esistono gli equivalenti non parametrici, che devono essere utilizzati se i dati non sono distribuiti in modo gaussiano. Quindi anche nel caso del confronto tra medie deve essere effettuata una analisi preliminare dei dati per decidere quale sia il test appropriato.

3.3.1. Confronto tra due campioni indipendenti (test t di Student e test non parametrici)

Scaricate e salvate nella cartella C:\R\ il file <u>Statind.csv</u>.

Si tratta dei dati relativi alla determinazione della concentrazione della riboflavina in due tessuti, il fegato e il muscolo. Si tratta ovviamente di campioni indipendenti. Il contenuto del file aperto con un editor di testo come il Blocco note di Windows vi apparirà così, con i nomi delle variabili nella prima riga, e i dati di ciascun caso nelle righe successive:

```
Tessuto;Riboflavina
Fegato;0.95
Fegato;2.18
Fegato;1.12
Fegato;1.86
Muscolo;0.22
```

Muscolo;0.18 Muscolo;0.46 Muscolo;0.64 Muscolo;0.28 Muscolo;0.33 Muscolo;0.35 Muscolo;0.42

Come separatore di campo viene utilizzato il punto e virgola (;). Nella prima riga sono riportati i nomi delle variabili, nelle successive i dati. La variabile Tessuto della prima colonna è la variabile classificativa che specifica il tipo di tessuto nel quale è stata determinata la concentrazione di riboflavina, che a sua volta è riportata poi nella variabile numerica Riboflavina della seconda colonna.

Copiate e incollate nella Console di R ed eseguite questo codice:

con la prima riga sono importati i dati mydata <- read.table("c:/R/Statind.csv", header=TRUE, sep=";") # con il test F per il rapporto tra varianze si verifica se le varianze delle misure effettuate nel tessuto e nel muscolo sono omogenee attach(mydata) var.test(Riboflavina~Tessuto) # le varianze non sono omogenee! # test t di Student per due campioni indipendenti con varianze non omogenee t.test(Riboflavina~Tessuto, var.equal = FALSE) # in alternativa si può applicare il test U di Mann-Whitney per campioni indipendenti (test non parametrico) wilcox.test(Riboflavina~Tessuto)

in alternativa si può applicare il test di Kruskal-Wallis (test non parametrico)

kruskal.test(Riboflavina~Tessuto)

#

Dopo avere importato i dati viene effettuata l'analisi della varianza (var.test(Riboflavina~Tessuto)) per verificare se i due campioni hanno varianze omogenee:

F test to compare two variances

In effetti il test F per il rapporto tra varianze con un p = 0.02156 indica una varianza significativamente differente tra i risultati ottenuti nel tessuto e quelli ottenuti nel muscolo. Per questa ragione nel successivo test t di Student compare l'argomento **var.equal = FALSE** (se le varianze fossero state omogenee si sarebbe utilizzato l'argomento **var.equal = TRUE**):

Welch Two Sample t-test

```
data: Riboflavina by Tessuto
t = 3.6757, df = 3.367, p-value = 0.02867
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   0.2059442 2.0179447
sample estimates:
   mean in group Fegato mean in group Muscolo
```

1.5275000 0.4155556

La probabilità di osservare per caso una differenze tra le medie come quella effettivamente osservata è pari al 2,8% circa. Pertanto si conclude che le medie sono significativamente diverse: si osserva nel fegato una concentrazione di riboflavina maggiore di quella osservata nel muscolo.

I successivi due test non parametrici, il test U di Mann-Whitney e il test di Kruskal-Wallis, non sono sensibili alle differenze tra le varianze nei due campioni, e non necessitano quindi la correzione che si rende invece necessaria per il test t di Student.

```
Wilcoxon rank sum test
data: Riboflavina by Tessuto
W = 36, p-value = 0.002797
alternative hypothesis: true location shift is not equal to 0
        Kruskal-Wallis rank sum test
data: Riboflavina by Tessuto
Kruskal-Wallis chi-squared = 7.7143, df = 1, p-value = 0.005479
```

In ogni caso sia il test t di Student sia i due test non parametrici consentono di concludere che esiste una differenza significativa nella concentrazione di riboflavina nei due tessuti.

3.3.2. Confronto tra dati appaiati (test t di Student e test non parametrici)

Scaricate e salvate nella cartella C:\R\ il file <u>Statapp.csv</u>.

Il contenuto del file aperto con un editor di testo come il Blocco note di Windows vi apparirà così, con i nomi delle variabili nella prima riga, e i dati di ciascun caso nelle righe successive (per semplicità sono state eliminate le righe di dati intermedi):

Nella prima riga sono riportati i nomi delle variabili, nelle successive i dati. La variabile Subito della prima colonna riporta i valori di aspartato-aminotransaminasi (AST, in U/L) misurati su un campione di siero immediatamento dopo il prelievo, mentre la variabile Dopo240re della seconda colonna riporta i valori determinati sullo stesso campione di siero dopo 24 ore di conservazione dei campioni, tappati per evitare fenomeni di evaporazione, e conservati alla temperatura di + 4 °C.

Copiate e incollate nella Console di R ed eseguite questo codice:

```
# con la prima riga sono importati i dati
mydata <- read.table("c:/R/Statapp.csv", header=TRUE, sep=";")
# test t di Student per dati appaiati
attach(mydata)
t.test(Subito, Dopo24ore, paired=TRUE)
</pre>
```

in alternativa si può applicare il test di Wilcoxon (Wilcoxon Signed Rank Test) per dati appaiati (un test non parametrico)

wilcox.test(Subito, Dopo24ore, paired=TRUE, exact=FALSE)

#

Sia il test ti di Student per dati appaiati con un valore di p = 0.4718 sia il test di Wilcoxon con un valore

di p = 0.6255 consentono di concludere che la concentrazione dell'AST misurata nel siero conservato per 24 ore alla temperatura di +4 °C non differisce significativamente da quella misurata sul siero immediatamente dopo il prelievo:

```
Paired t-test
```

Anche in questo caso la scelta tra test parametrico (test t di Student) e non parametrico (test di Wilcoxon) può essere fatta mediante analisi della gaussianità dei dati. Mediante Excel o OpenOffice Calc è facile aggiungere ai dati originari una colonna con una nuova variabile, la Differenza (presa con il segno) tra la concentrazione trovata immediatamente dopo il prelievo e quella osservata dopo 24 ore.

Subito	Dopo24ore	Differenza
17	16	1
18	17	1
19	24	-5
20	21	-1
22	24	-2
24	25	-1
24	27	-3
30	25	5
37	42	-5
42	40	2
45	48	-3
52	57	-5
62	60	2
67	71	-4
95	86	9
101	106	-5
174	180	-6
327	300	27
433	440	-7
476	430	46
495	515	-20
652	631	21

Se effettuate un test di gaussianità sulla variabile Differenza troverete che essa non è distribuita in

modo gaussiano. Pertanto in questo caso è necessario che le conclusioni siano tratte sulla base del risultato ottenuto con il test di Wilcoxon (test non parametrico).

3.3.3. Confronto con una media teorica (test t di Student)

In laboratorio si è preparata mediante pesata e diluizione una soluzione con una concentrazione di 8.0 g/dL di albumina umana. Definiamo questo valore come la "media teorica" della concentrazione dell'albumina in quanto, nelle opportune condizioni, la misura della massa del soluto con una bilancia e la misura del volume della soluzione finale con vetreria tarata di classe A consentono di avere una concentrazione finale nota con una accuratezza che è di alcuni ordini di grandezza superiore a quella di un comune metodo analitico.

Analizzando il siero con il metodo analitico del quale si intende verificare l'accuratezza, si ottengono i seguenti valori: 8.2, 8.3, 7.9, 8.1 e 8.0 g/dL. Quello che segue è il codice **R** necessario per sapere se i risultati ottenuti si discostano significativamente dal valore assegnato.

aprite la Console di R e inserite direttamente i valori ottenuti in un vettore myvalues <- c(8.2, 8.3, 7.9, 8.1, 8.0) # se lo desiderate potete visualizzare a scopo di verifica i dati inseriti myvalues # mostra i dati contenuti nell'oggetto # potete ora confrontare i cinque valori ottenuti con il valore assegnato di 8.0 g/dL mediante il test t di Student per una media teorica t.test(myvalues, mu = 8) # I risultati sono: One Sample t-test data: myvalues t = 1.4142, df = 4, p-value = 0.2302 alternative hypothesis: true mean is not equal to 8 95 percent confidence interval: 7.903676 8.296324 sample estimates:

La media misurata di 8.1 non differisce significativamente dalla media teorica essendo p = 0.2302. La probabilità di osservare per caso una differenza di 0.1 tra il valore teorico e il valore misurato è del 23% circa, troppo elevata per escludere il caso dalle possibili cause della differenza. Il dato viene confermato dal fatto che i limiti di confidenza al 95% della media (uguale a 8.1) delle cinque misure effettuate sono rispettivamente 7.903676 (il limite inferiore) e 8.296324 (il limite superiore) e pertanto includono nell'incertezza delle conclusioni il valore 8 della media teorica.

3.4. Regressione lineare

mean of x

8.1

La regressione lineare viene tradizionalmente associata al coefficiente di correlazione lineare r. Nonostante quest'ultimo abbia in sé un significato limitato, la possibilità che si ha con **R** di sviluppare una matrice dei coefficienti di correlazione tra più variabili e di generare matrici di scatter plot, che altro non sono che diagrammi cartesiani multipli che illustrano graficamente le relazioni tra dette variabili, rappresenta uno strumento utile per l'analisi esplorativa dei dati.

3.4.1. Correlazione (coefficiente di correlazione lineare r)

Scaricate e salvate nella cartella C:\R\ il file <u>Statcorr.csv</u>. I dati contenuti hanno una struttura molto semplice e il file aperto con Excel o con OpenOffice.org Calc appare così:

GR	RGO	HB	НСТ	HBA2	MCV	HBF	MCH	RDW	FERRO
4.90	97	13.3	40.6	1.8	82.8	0.6	27.1	17.3	106
4.66	81	10.8	34.3	2.6	73.6	1.6	23.2	21.5	148
5.43	57	11.5	36.1	4.8	66.5	2.5	21.1	21.0	104
5.41	63	10.8	39.7	2.5	73.4	1.8	20.0	19.9	74
4.94	60	10.4	32.3	1.4	65.0	0.7	21.1	23.7	17

Le variabili contenute nel file sono gli eritrociti (GR, in 10^12/L), la resistenza globulare osmotica (RGO, in %), l'emoglobina (HB, in g/dL), l'ematocrito (in %), l'emoglobina A2 (in %), il volume globulare medio (MCV, in fL), l'emoglobina F (in %), l'emoglobina corpuscolare media (MCH, in pg), l'ampiezza della distribuzione dei globuli rossi (Red Distribution Width, in %) misurati in 643 soggetti che includevano soggetti sani e soggetti con beta-talassemia, con alfa-talassemia, con anemia sideropenica. Si tratta degli stessi dati utilizzati per illustrate gli scatter plot. Da notare che sono utilizzate la libreria **Hmisc** e la libreria **car** che, se non lo avete ancora fatto, dovete scaricare dal CRAN prima di eseguire l'esempio (in caso contrario si verificherà un errore nell'esecuzione del codice laddove è previsto l'utilizzo delle librerie).

Copiate e incollate nella Console di R ed eseguite questo codice:

con la prima riga sono importati i dati

mydata <- read.table("c:/R/Statcorr.csv", header=TRUE, sep=";")</pre>

matrice dei coefficienti di correlazione, method può essere pearson (il classico r), spearman, kendall cor(mydata, use="complete.obs", method="pearson")

calcola i coefficienti di correlazione con i livelli di significatività

library(Hmisc)

x <- as.matrix(mydata) # trasforma mydata in una matrice denominata x

rcorr(x, type="pearson") # type può essere pearson (il classico r) o spearman

#

Innanzitutto sono calcolati i coefficienti di correlazione r tra tutte le possibili combinazioni di variabili, la diagonale divide la matrice in due parti simmetriche. I valori del coefficiente di correlazione r sulla diagonale sono ovviamente tutti uguali esattamente a 1.00, in quanto rappresentano la correlazione di ciascuna variabile con sé stessa:

	GR	RGO	HB	HCT	HBA2	MCV	HBF	MCH	RDW	FERRO
GR	1.00	-0.42	0.40	0.48	0.54	-0.41	0.26	-0.42	0.37	0.27
RGO	-0.42	1.00	0.43	0.37	-0.63	0.74	-0.43	0.74	-0.61	-0.02
HB	0.40	0.43	1.00	0.97	-0.03	0.64	-0.13	0.65	-0.54	0.45
HCT	0.48	0.37	0.97	1.00	0.02	0.59	-0.10	0.56	-0.48	0.46
HBA2	0.54	-0.63	-0.03	0.02	1.00	-0.42	0.44	-0.43	0.26	0.30
MCV	-0.41	0.74	0.64	0.59	-0.42	1.00	-0.32	0.97	-0.85	0.26
HBF	0.26	-0.43	-0.13	-0.10	0.44	-0.32	1.00	-0.32	0.30	0.13
MCH	-0.42	0.74	0.65	0.56	-0.43	0.97	-0.32	1.00	-0.85	0.25
RDW	0.37	-0.61	-0.54	-0.48	0.26	-0.85	0.30	-0.85	1.00	-0.31
FERRO	0.27	-0.02	0.45	0.46	0.30	0.26	0.13	0.25	-0.31	1.00

n= 643

Quindi viene riportato il valore di probabilità p di osservare per caso il valore di r calcolato:

Р										
	GR	RGO	HB	HCT	HBA2	MCV	HBF	MCH	RDW	FERRO
GR		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
RGO	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.5911
HB	0.0000	0.0000		0.0000	0.4331	0.0000	0.0015	0.0000	0.0000	0.0000
HCT	0.0000	0.0000	0.0000		0.5489	0.0000	0.0140	0.0000	0.0000	0.0000
HBA2	0.0000	0.0000	0.4331	0.5489		0.0000	0.0000	0.0000	0.0000	0.0000
MCV	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000
HBF	0.0000	0.0000	0.0015	0.0140	0.0000	0.0000		0.0000	0.0000	0.0006
MCH	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000
RDW	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000
FERRO	0.0000	0.5911	0.0000	0.0000	0.0000	0.0000	0.0006	0.0000	0.0000	

Matrice di dispersione

Figura 3.4 Sintesi grafica dell'analisi delle variabili mediante una matrice degli scatter plot.

Con la libreria **car** mediante una sola riga di codice potete rappresentare graficamente le relazioni tra le variabili:

#

library(car)

scatterplotMatrix(~GR+RGO+HB+HCT+HBA2+MCV+HBF+MCH+RDW+FERRO, reg.line=lm, smooth=TRUE, span=0.5, diagonal = "density", main="Matrice di dispersione", data=mydata)

#

La matrice dei diagrammi di dispersione (scatter plot) conferma le forti correlazioni esistenti tra HB e HCT e tra MCH e MCV (**Figura 3.4**).

Questa parte relativa al coefficiente di correlazione può essere utilmente integrata con la parte nella quale r è trattato in forma grafica sotto forma di correlogrammi.

3.4.2. Regressione lineare (regressione lineare semplice e regressione lineare multipla)

Scaricate e salvate nella cartella C:\R\ il file <u>Statreglin.csv</u>. Il contenuto del file aperto con un editor di testo come il Blocco note di Windows vi apparirà così, con i nomi delle variabili nella prima riga, e i dati di ciascun caso nelle righe successive:

Sesso;Eta;Colesterolo;HDL;LDL;Trigliceridi
M;33;56;44;9;19
F;81;101;63;26;62
.....F;74;385;52;256;327
F;64;397;70;292;96

Nella prima riga sono riportati i nomi delle variabili, nelle successive i dati, relativi a oltre duemila casi per quali erano disponibili sesso, età, e i valori di colesterolo totale, colesterolo HDL, colesterolo LDL e trigliceridi (concentrazione nel siero, in mg/dL). Si tratta degli stessi dati utilizzati per le statistiche elementari, dai quali sono stati questa volta esclusi tutti i casi con dati mancanti. Da notare che sono utilizzate la libreria **car**, la libreria **relaimpo** e la libreria **gvlma** che, se non lo avete ancora fatto, dovete scaricare dal CRAN prima di eseguire l'esempio (in caso contrario si verificherà un errore nell'esecuzione del codice laddove è previsto l'utilizzo delle librerie).

Copiate e incollate nella Console di R ed eseguite un blocco di codice alla volta al fine di familiarizzare con questo tipo di analisi dei dati. Che è verbosa e ridondante. Ma solamente a scopo didattico, al fine di fornire una ampia panoramica del codice disponibile per questo tipo di analisi, e tesaurizzarlo per usi futuri:

con la prima riga sono importati i dati

mydata <- read.table("c:/R/Statreglin.csv", header=TRUE, sep=";")</pre>

viene calcolata la regressione lineare mediante la funzione $lm(y \sim x1 + x2 + x3, data=)$; y è la variabile dipendente in ordinate. Se x1 è l'unica variabile indipendente, viene calcolata la regressione lineare semplice, se x1 + x2 + sono più variabili indipendenti viene calcolata la regressione lineare multipla fit <- lm(LDL ~ Colesterolo + HDL + Trigliceridi, data=mydata)

calcola intercetta e coefficienti delle x

coefficients(fit)

#

Dopo avere importato di dati, la regressione multipla viene calcolata e salvata (seconda riga) in un oggetto denominato fit, cui più semplicemente fanno riferimento le successive funzioni, quindi sono mostrati (coefficients(fit)) i coefficienti dell'equazione della regressione lineare multipla:

(Intercept) Colesterolo HDL Trigliceridi -0.7457405 0.8907005 -0.7904253 -0.1158645 che quindi è

```
LDL = -0.7457405 + 0.8907005 · Colesterolo - 0.7904253 · HDL - 0.1158645 · Trigliceridi
```

calcola gli intervalli di confidenza dell'intercetta e dei coefficienti delle x
confint(fit, level=0.95)

#

Questi sono gli intervalli di confidenza al 95% calcolati:

2.5 % 97.5 % (Intercept) -2.0868561 0.5953751 Colesterolo 0.8844198 0.8969812 HDL -0.8069285 -0.7739221 Trigliceridi -0.1197046 -0.1120245

Il dato più interessante è che l'intercetta non è significativamente diversa da 0 (zero). Pertanto l'equazione riportata sopra può essere semplificata e riscritta come

LDL = 0.8907005 · Colesterolo - 0.7904253 · HDL - 0.1158645 · Trigliceridi

mostra un riepilogo dei risultati

summary(fit)

ricalcola i valori mediante l'equazione della retta di regressione

fitted(fit)

calcola le differenze residue tra valore osservato e valore calcolato

residuals(fit)

analisi della varianza per le differenze spiegate dalle x

anova(fit)

matrice di covarianza dell'intercetta e dei coefficienti delle x

vcov(fit)

#

Questi riepiloghi forniscono una analisi dettagliata e puntuale dei dati, che è necessario avere sempre ben presente, ma che nel nostro caso risulta ridondante per cui non la commenteremo.

confronta la regressione a tre variabili con quella a due variabili mediante analisi della varianza fit1 <- Im(LDL ~ Colesterolo + HDL + Trigliceridi, data=mydata) fit2 <- Im(LDL ~ Colesterolo + HDL, data=mydata) anova(fit1, fit2)

#

L'analisi della varianza conferma che la regressione calcolata con tre e quella calcolate con due sole variabili indipendenti differiscono significativamente, pertanto è opportuno utilizzare la prima, più completa, per esprimere i risultati:

Analysis of Variance Table

```
Model 1: LDL ~ Colesterolo + HDL + Trigliceridi
Model 2: LDL ~ Colesterolo + HDL
Res.Df RSS Df Sum of Sq F Pr(>F)
1 2404 79918
2 2405 196298 -1 -116380 3500.8 < 2.2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
```

calcola l'importanza relativa di ciascuna variabile indipendente con quattro diversi metodi library(relaimpo) myplot <- calc.relimp(fit,type=c("lmg","last","first","pratt"), rela=TRUE)</pre>

mostra il grafico

plot(myplot, main="Importanza relativa delle variabili indipendenti") # ripete il calcolo aggiungendo gli intervalli di confidenza dei valori mediante bootstrap boot <- boot.relimp(fit, b = 1000, type = c("Img", "Iast", "first", "pratt"), rank=TRUE, diff=TRUE, rela=TRUE) booteval.relimp(boot) # mostra i risultati windows() # apre una nuova finestra # mostra il grafico plot(booteval.relimp(boot,sort=TRUE), main="Importanza relativa delle variabili indipendenti") #</pre>

Con le prime tre righe di codice viene generato il grafico della importanza relativa delle variabili indipendenti nel determinare la retta di regressione, mettendo a confronto le conclusioni ottenute con quattro metodi di calcolo, che peraltro forniscono risultati molto simili. Con le successive quattro righe di codice viene generato lo stesso identico grafico, questa volta con i limiti di confidenza calcolati mediante bootstrap (**Figura 3.5**).

Figura 3.5 Importanza relativa della concentrazione di colesterolo totale (Cole), colesterolo HDL (HDL) e trigliceridi (Trig), variabili indipendenti, nel determinare la concentrazione del colesterolo LDL (variabile dipendente) utilizzando un modello di regressione lineare multipla.

grafico (leverage plot) dell'influenza dei dati sulle conclusioni
windows() # apre una nuova finestra
leveragePlots(fit, ask=FALSE)

#

Mostra il grafico (che qui non viene riportato) dell'influenza delle tre variabili indipendenti (colesterolo, HDL e Trigliceridi) sulle conclusioni (variabile dipendente LDL). Una discussione tecnica sulla costruzione e il significato dei leverage plot la trovate sul sito del software JMP¹⁰.

identificazione degli outliers, inizia caricando la libreria car library(car)

identificazione degli outliers, valore p di Bonferonni per le osservazioni estreme (outliers)
outlierTest(fit)

#

Il test di Bonferroni viene impiegato per identificare i dati aberranti, i dati che cioè si discostano in modo "eccessivo" dai rimanenti. Il giudizio finale rimane ovviamente a carico di chi ha raccolto i dati, che dovrà analizzarli per capire le ragioni che hanno determinato la differenza statisticamente "poco plausibile"

¹⁰ <u>http://www.jmp.com/support/help/Leverage_Plot_Details.shtml</u>

osservata. I dati numero 2398, 2259, 855, 606, 1551 e 753 si discostano significativamente dagli altri:

	rstudent	unadjusted p-value	Bonferonni p
2389	-6.908758	6.2382e-12	1.5022e-08
2259	-5.566038	2.8954e-08	6.9722e-05
855	4.996746	6.2502e-07	1.5050e-03
606	-4.745328	2.2038e-06	5.3068e-03
1551	-4.696544	2.7951e-06	6.7305e-03
753	-4.584611	4.7814e-06	1.1514e-02

mostra il grafico dei quantili per i residui studentizzati
windows() # apre una nuova finestra
qqPlot(fit, main="Grafico dei quantili per i residui")
#

Il grafico dei quantili per i residui studentizzati (Figura 3.6) conferma anch'esso la presenza di dati che si discostano molto dalla distribuzione attesa.

identificazione degli outliers, grafico della distanza D di Cook, identifica i valori con D > 4/(n-k-1)
windows() # apre una nuova finestra

```
cutoff <- 4/((nrow(mydata)-length(fit$coefficients)-2))
plot(fit, which=4, cook.levels=cutoff)
"</pre>
```

```
#
```

La distanza D di Cook (**Figura 3.7**) misura l'effetto conseguente alla eliminazione di una specifica osservazione. Viene riportato il numero del dato per quelli che determinano l'effetto maggiore, al fine di consentirne la rapida identificazione: sono confermati tra l'altro i dati numero 606, 753 e 2389 che abbiamo già visto identificati sopra con il test di Bonferroni.

identificazione degli outliers, un altro grafico dell'influenza dei dati sulle conclusioni
windows() # apre una nuova finestra
cutoff <- 4/((nrow(mydata)-length(fit\$coefficients)-2))
plot(fit, which=4, cook.levels=cutoff)
influencePlot(fit, main="Grafico dell'influenza dei dati", sub="Dimensione dei cerchi proporzionale alla
distanza D di Cook")
#</pre>

In questo ulteriore grafico è la dimensione dei cerchi ad essere proporzionale alla distanza di Cook (Figura 3.8).

Figura 3.7 Distanza D di Cook. Per i dati la cui eliminazione determina l'effetto maggiore viene riportato il numero dei dato al fine di consentirne la rapida identificazione.

test per la linearità, grafico di Ceres windows() # apre una nuova finestra ceresPlots(fit, ask=FALSE)

#

Cook.

Il grafico di Ceres (**Figura 3.9**), sempre sviluppato da Cook, conferma l'esistenza di una relazione lineare tra colesterolo totale e colesterolo LDL, mentre il colesterolo HDL e i trigliceridi contribuiscono al colesterolo LDL in modo non lineare.

Figura 3.9 Il grafico di Ceres documenta l'esistenza di un contributo al colesterolo LDL (varibile dipendente) lineare da parte del colesterolo totale e non lineare da parte di colesterolo LDL e trigliceridi.

A questo punto, dato che con le molteplici istruzioni **windows()** avete aperto via via nuove finestre che si sono andate sovrapponendo, ciascuna con il proprio grafico, spostate o iconizzate la finestra dell'ultimo grafico per vedere la finestra con il grafico precedente, e così via.

Ed ecco finalmente l'ultimo blocco di codice:

```
# test per la linearità, un test globale per l'assunto di linearità
library(gvlma)
gvmodel <- gvlma(fit)</pre>
summary(gvmodel)
#
Questo test globale e generalista, pur con tutti i limiti derivanti dal comprimere le conclusioni in pochi indici
numerici, conferma che l'assunto di linearità non è soddisfatto:
ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance = 0.05
Call:
 gvlma(x = fit)
                         Value p-value
                                                                 Decision
Global Stat
                      557.2861 0.000000 Assumptions NOT satisfied!
Skewness
                        0.5274 0.467682
                                               Assumptions acceptable.
Kurtosis
                      412.5266 0.000000 Assumptions NOT satisfied!
Link Function
                         7.4492 0.006347 Assumptions NOT satisfied!
Heteroscedasticity 136.7829 0.000000 Assumptions NOT satisfied!
```

La conclusione è ora abbastanza chiara. I dati raccolti presentano due tipi di problemi. Il primo è che alcuni di essi andrebbero rivalutati per capire il significato del loro eccessivo scostamento dai dati rimanenti. Il secondo è che la relazione tra le variabili non è del tutto lineare. Conseguentemente la regressione lineare (in questo caso multipla), ancorché sia statisticamente significativa, deve essere intesa come una approssimazione di "grana media" della relazione che intercorre tra le quattro componenti in esame.

3.5. Analisi multivariata

Analisi multivariata è l'espressione con cui si fa rifermento alle numerose tecniche statistiche che consentono lo studio di sistemi complessi a più variabili¹¹. Qui vediamo come utilizzare **R** per l'analisi dei gruppi o cluster analysis.

id	Calcio	Fosfato	Ossalato	Magnesio
C1	99	81	69	61
C2	78	65	53	43
C3	81	66	38	54
C4	45	23	19	16
C5	44	18	24	19
C6	102	83	72	66
C7	83	68	49	45
C8	74	71	41	57
C9	38	19	22	14
C10	48	14	21	12

Scaricate e salvate nella cartella C:\R\ il file <u>Clusterhclust.csv</u>.

Si tratta dei dati relativi alla composizione in calcio, fosfato, ossalato e magnesio di 10 calcoli delle vie urinarie. Il contenuto del file aperto con Excel o con OpenOffice.org Calc vi apparirà come vedete sopra, con i nomi delle variabili nella prima riga, i dati di ciascun caso nelle righe successive, e l'identificativo di ciascun caso nella prima colonna (C1 = calcolo 1, eccetera):

Copiate e incollate nella Console di R ed eseguite questo codice:

con la prima riga sono importati i dati mydata <- read.table("c:/R/Clusterhclust.csv", header=TRUE, sep=";", row.names="id") # visualizza i dati mydata # effettua il clustering gerarchico con il metodo di Ward d <- dist(mydata, method = "euclidean") # matrice delle distanze euclidee fit <- hclust(d, method="ward") plot(fit, main="Cluster analysis: dendrogramma", xlab="Differenti calcoli delle vie urinarie analizzati", ylab="Distanza nella composizione") # traccia il dendrogramma groups <- cutree(fit, k=3) # divide in 3 cluster principali, valore k da cambiare al bisogno # evidenzia i 3 cluster, attenzione a digitare invio nella Console di R rect.hclust(fit, k=3, border="red") # Al termine vi comparirà una finestra con il dendrogramma (Figura 3.10).

In ascisse sono riportati i singoli calcoli, in ordinate la distanza alla quale questi vanno via via confluendo per "somiglianza" in cluster sempre più estesi. Minore la è distanza alla quale avviene la confluenza, maggiore è la somiglianza nella composizione dei calcoli e dei successivi cluster. Non esiste un valore soglia della distanza alla quale fermare il processo di raggruppamento per somiglianza dei calcoli, anche se qui sembra ragionevole affermare che (i) si vanno formando tre gruppi/cluster di calcoli e (ii) la composizione chimica dei calcoli C1 e C6 è più simile a quella dei calcoli C2,C7, C3 e C(che a quella dei calcoli C10, C9, C4

¹¹ <u>http://www.treccani.it/enciclopedia/analisi-multivariata/</u>

Statistica con ${f R}$ per il laboratorio di analisi cliniche - ver 1.0

e C5.

Potete facilmente riutilizzare il codice per le vostre specifiche esigenze con queste semplici modifiche: \rightarrow sostituire il nome del file "c:/R/Clusterhclust.csv" con quello del vostro file;

 \rightarrow controllare il separatore di campo usato ed eventualmente correggere opportunamente il punto e virgola in sep=";";

→ togliere per intero **,row.names="id"** se il votro file non contiene una variabile **id** con gli identificativi univoci dei vostri casi;

→ adattare il testo delle legende main="", xlab="" e ylab="";

 \rightarrow cambiare nel comando groups <- cutree(fit, k=3) il valore di k, che indica quanti sono i gruppi principali identificati dalla cluster analysis (sta a voi valutarlo in base alle distanze verticali dei dendrogrammi);

→ adattare il codice **rect.hclust(fit, k=3, border="red")** al valore di **k** prescelto ed eventualmente cambiare il colore del bordo (**border="red"**) dei riquadri che evidenziano i gruppi principali identificati dalla cluster analysis.

Cluster analysis: dendrogramma

Figura 3.10 Dendrogramma che illustra la confluenza dei calcoli della vie urinarie, in termini di composizione chimica, in tre gruppi (cluster) principali.

Differenti calcoli delle vie urinarie analizzati hclust (*, "ward")

Ora scaricate e salvate nella cartella C:\R\ il file Clusterpvclust.csv. Il contenuto del file vi apparirà così, con i nomi delle variabili nella prima riga, i dati di ciascun caso nelle righe successive, e l'identificativo di ciascun caso nella prima colonna (C1 = calcolo 1, eccetera):

id	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
Calcio	99	78	81	45	44	102	83	74	38	48
Fosfato	81	65	66	23	18	83	68	71	19	14
Ossalato	69	53	38	19	24	72	49	41	22	21
Magnesio	61	43	54	16	19	66	45	57	14	12

Si tratta sempre degli stessi dati relativi alla composizione di 10 calcoli delle vie urinarie visti in precedenza, ma attenzione: righe e colonne sono state scambiate tra loro. La trasposizione tra righe e colonne si rende necessaria per utilizzare la libreria **pvclust** (che, se non lo avete ancora fatto, dovete scaricare dal CRAN prima di eseguire l'esempio). Il metodo di clustering gerarchico applicato prevede in più, rispetto al caso precedente, il calcolo mediante bootstrap dei valori di probabilità p che caratterizzano i cluster formati in due modi differenti: come "Bootstrap Probability values" (indicati con BP) e come "Approximately Unbiased probability values" (indicati con AU). Per i dettagli vedere la documentazione della libreria.

Copiate e incollate nella Console di R ed eseguite questo codice:

con la prima riga sono importati i dati mydata <- read.table("c:/R/Clusterpvclust.csv", header=TRUE, sep=";", row.names="id") # visualizza mydata mydata # carica la libreria necessaria library(pvclust) # clustering gerarchico con il metodo di Ward e i valori di p calcolati mediante bootstrap fit <- pvclust(mydata, method.hclust="ward", method.dist="euclidean") # traccia il dendrogramma con i valori di p plot(fit, main="Cluster analysis: dendrogramma", xlab="Differenti calcoli delle vie urinarie analizzati", ylab="Distanza nella composizione", print.pv=TRUE, print.num=TRUE) # evidenzia i cluster fortemente supportati dai dati pvrect(fit, alpha=0.95, pv="au", type="geq", max.only=TRUE) # legenda: BP = bootstrap probability, AU = approximately unbiased, p-values = probability values

Anche in questo caso al termine vi comparirà una finestra con il dendrogramma (Figura 3.11).

Figura 3.11 Dendrogramma che illustra la confluenza dei calcoli della vie urinarie, in termini di composizione chimica, in due gruppi (cluster) principali.

Differenti calcoli delle vie urinarie analizzati Cluster method: ward

Il fatto che i cluster siano due (**Figura 3.10**) o tre (**Figura 3.11**) e possano dipendere dal metodo adottato non è particolarmente preoccupante. La cluster analysis è un metodo per l'analisi esplorativa dei dati, e le conclusioni non devono essere viste come qualcosa di irreversibile (e quindi nel caso specifico contradditorio). Il metodo di clusterizzazione adottato deve essere integrato da una modellizzazione che includa (nel caso specifico) il processo di formazione dei calcoli delle vie urinarie, le patologie che ne sono alla base, i fattori che ne scatenano la formazione, al fine di collegare la somiglianza statistica dei calcoli agli elementi che determinano la loro formazione e la loro confluenza in gruppi significativi.

3.6 Statistica bayesiana

L'applicazione del teorema di Bayes alla diagnostica di laboratorio è estesamente trattata nel mio sito tanto da non richiedere ulteriori considerazioni. Mi limito ad un esempio che consente di illustrare come utilizzare R per la valutazione di un test diagnostico, ricordando che trovate nella parte relativa alle curve ROC un indispensabile complemento.

L'esempio è tratto da Scott IA, Greenberg PB, Poole PJ. Cautionary tales in the clinical interpretation of studies of diagnostic tests. Internal Medicine Journal 38 (2008) 120–129. Un nuovo test diagnostico è stato provato su 1586 pazienti. Di 744 pazienti che avevano la malattia, 670 sono risultati positivi al test. Di 842 pazienti che non avevano la malattia, 640 sono risultati negativi al test.

Possiamo riportate i dati forniti in una tabella e completarla con Excel o OpenOffice Calc:

	Malattia +	Malattia -	Totale
Test +	670	202	872
Test -	74	640	714
Totale	744	842	1.586

Se ne deduce pertanto che erano 670 i veri positivi (VP), 202 i falsi positivi (FP), 74 i falsi negativi (FN) e infine 640 i veri negativi (VN):

	Malattia +	Malattia -
Test +	VP	FP
Test -	FN	VN

Il codice R è estremamente conciso se si utilizza la libreria **epiR**, che ovviamente deve essere preventivamente scaricata dal CRAN:

carica la libreria necessaria

library(epiR)

i dati sono immessi direttamente dalla Console di R
data <- as.table(matrix(c(670,202,74,640), nrow = 2, byrow = TRUE))
sono calcolate e mostrate tutte le statistiche
epi.tests(data, conf.level = 0.95, verbose = TRUE)
#</pre>

#

Il fatto molto interessante è che le grandezze calcolate sono riportate ciascuna con il rispettivo intervallo di confidenza al 95%.

\$se

```
lower
         est
                             upper
1 0.9005376 0.8767462 0.9210923
$sp
        est
               lower
                           upper
1 0.760095 0.7297765 0.7885803
$diag.acc
                  lower
         est
                              upper
1 0.8259773 0.8064049 0.8443346
$diaq.or
        est
                lower
                         upper
1 28.68611 21.51819 38.24174
$nnd
        est lower
                       upper
1 1.513701 1.4091 1.648743
$youden
         est lower
                              upper
1 0.6606326 0.6065226 0.7096726
$ppv
                  lower
         est
                              upper
1 0.7683486 0.7388926 0.7959784
$npv
         est
                  lower
                              upper
1 0.8963585 0.8716393 0.9177402
$plr
        est
               lower
                          upper
1 3.753726 3.320688 4.243235
$nlr
                  lower
                              upper
         est
1 0.1308552 0.1050643 0.1629771
Ecco qui le grandezze calcolate con R, il loro significato, le formule con cui sono calcolate, e il risultato
numerico ottenuto (per semplicità l'intervallo di confidenza viene omesso):
$aprev
prevalenza apparente, soggetti con il test positivo = (VP+FP)/(VP+FP+FN+VN) = 0.5498108
$tprev
prevalenza reale, soggetti con la malattia = (VP+FN)/(VP+FP+FN+VN) = 0.4691047
$se
sensibilità, positività nei malati = VP/(VP+FN) = 0.9005376
$sp
specificità, negatività nei sani = VN/(VN+FP) = 0.760095
$diag.acc
accuratezza diagnostica = (VP+VN)/(VP+FP+FN+VN) = 0.8259773
```

\$diag.or

odd ratio = rapporto LR+/LR- = 28.68611

\$nnd

numero necessario per la diagnosi = 1/(sensibilità - (1 - specificità) = 1.513701

\$youden

indice di Youden = sensibilità + specificità - 1 = 0.6606326

\$ppv

valore predittivo di un test positivo = VP/(VP+FP) = 0.7683486

\$npv

valore predittivo di un test negativo = VN/(VN+FN) = 0.8963585

\$plr

rapporto di verosimiglianza LR+ per un test positivo = (VP/(VP+FN))/(FP/(FP+VN)) = 3.753726 **\$nlr**

rapporto di verosimiglianza LR- per un test negativo = (FN/(VP+FN))/(VN/(FP+VN)) = 0.1308552

4. R funzioni grafiche

Le funzioni grafiche di **R** sono trattate assumendo che abbiate familiarizzato adeguatamente con tutti gli argomenti generali contenuti nel capitolo 2. Le indicazioni qui riportate fanno riferimento alla versione di **R** per Windows. Per MacOS X vedere sempre nel capitolo 2 come utilizzare i dati e gli script con MacOS X.

Potete imparare a utilizzare le funzioni grafiche di **R** eseguendo il codice che trovate nelle pagine seguenti con i dati di esempio forniti come file .csv generati con Excel e OpenOffice.org Calc che devono essere scaricati e installati sul PC nella cartella C:\R\. Se li installate in una cartella diversa, dovete modificare opportunamente il codice **read.table("c:/R/** specificando il nuovo percorso nel quale avete installato i file. Per eseguire il codice **R** dovete semplicemente selezionarlo nella pagina web includendo il cancelletto # che chiude ogni blocco di codice, copiarlo, e incollarlo nella Console di R.

4.1. Istogrammi

Scaricate e salvate nella cartella C:\R\ il file <u>Densplot.csv</u>. Il file contiene per 1000 soggetti il sesso (M o F), l'età (in anni) e la concentrazione del colesterolo nel siero (in mg/dL). Aperto con Excel o con OpenOffice.org Calc appare così:

Sesso	Eta		Colest
М		13	172
F		14	132
М		14	176
F		15	156
F		16	190

Aperto con un editor di testo come il Blocco note di Windows vi apparirà così, con i nomi delle variabili nella prima riga, i dati dei singoli casi nelle righe successive, e come separatore di campo il punto e virgola (;):

Sesso;Eta;Colest M;13;172 F;14;132 M;14;176 F;15;156 F;16;190 ...;...;...

In realtà è questa la modalità (formato ASCII) con la quale i dati sono stati salvati nel file. Excel e OpenOffice Calc caricano questi dati una riga alla volta, riconoscono e utilizzano il separatore ; per separare i campi riportati in ciascuna riga, e formattano le variabili nelle colonne, righe e celle tipiche del tabellone elettronico. Aggiungendo poi la possibilità di manipolarle tipiche del tabellone elettronico.

Copiate e incollate nella Console di R questo codice ed eseguitelo un blocco alla volta per familiarizzare con il linguaggio soffermandovi sui singoli passaggi:

```
# con la prima riga sono importati i dati
mydata <- read.table("c:/R/Densplot.csv", header=TRUE, sep=";")
# visualizza i dati nella Console di R
mydata
# traccia un istogramma semplice dei dati
hist(mydata$Colest, main = "Istogramma semplice", xlab = "Colesterolo totale in mg/dL", ylab =
"Frequenza")
#</pre>
```


Se l'istogramma semplice non vi piace (**Figura 4.1**), potete pensare di realizzare un istogramma colorato (**Figura 4.2**) nel quale gestire anche il numero delle classi in cui suddividere i dati con questo codice:

Colesterolo totale in mg/dL

#

Statistica con R per il laboratorio di analisi cliniche - ver 1.0

Colesterolo totale in mg/dL

Con l'argomento **col="red"** l'istogramma viene colorato in rosso, mentre con l'argomento **breaks=20** viene definito il numero delle classi desiderate.

Provate a cambiarlo per vedere l'effetto risultante, per esempio provate con 100 classi (Figura 4.3):

```
#
windows() # apre una nuova finestra
hist(mydata$Colest, breaks=100, col="red", main = "Istogramma colorato con 100 classi", xlab =
"Colesterolo totale in mg/dL", ylab = "Frequenza")
#
```


Figura 4.3 Istogramma della distribuzione della concentrazione del colesterolo nel siero. Dati suddivisi in 100 classi.

Potete anche tracciare l'istogramma e sovraimporre ad esso la distribuzione gaussiana teorica (Figura 4.4):

traccia l'istogramma e vi sovrappone la curva gaussiana corrispondente **windows()** # apre una nuova finestra

```
x <- mydata$Colest
```

```
h <-hist(x, breaks=33, col="red", main = "Istogramma con curva gaussiana", xlab="Colesterolo totale in
mg/dL", ylab = "Frequenza")
xfit<-seq(min(x),max(x),length=40)
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue", lwd=2)
#
```

In questo caso i dati sono stati suddivisi in 33 classi, seguendo la regola per cui il numero delle classi dovrebbe essere uguale alla radice quadrata del numero dei dati (qui abbiamo 1000 dati, la cui radice quadrata è circa 33). A questo punto, dato che con le tre istruzioni **windows()** avete aperto tre nuove finestre, avrete un totale di quattro finestre, con altrettanti grafici, sovrapposte. Spostate o iconizzate la finestra dell'ultimo grafico per vedere la finestra con il grafico precedente, e così via.

Il codice degli esempi riportati sopra per rappresentare gli istogrammi può essere interamente riutilizzato per le vostre specifiche esigenze, ricordando che dovete semplicemente:

→ sostituire il nome del file "c:/R/Densplot.csv" con quello del vostro file;

 \rightarrow controllare il separatore di campo usato ed eventualmente correggere opportunamente il punto e virgola in sep=";";

 \rightarrow adattare il testo delle legende main="" (il titolo), xlab="" (asse x delle ascisse) e ylab="" (asse y delle ordinate);

→ cambiare il numero delle classi in cui suddividere i dati (breaks=)

 \rightarrow personalizzare i colori del riempimento (col="") e dei bordi (border="").

Figura 4.4 Istogramma della distribuzione della concentrazione del colesterolo nel siero, con sovraimposta la distribuzione gaussiana teorica corrispondente.

La tabella dei colori di **R** è riportata nell'appendice A1.

4.2. Kernel density plot

Il diagramma che rappresenta la distribuzione della densità delle osservazioni (kernel density plot) è una modalità di rappresentazione piuttosto interessante, che può essere utilizzata in alternativa al tradizionale istogramma. Digitando kernel density plot nella casella di ricerca di Google trovate una moltitudine di riferimenti tecnici su questo tema.

Scaricate e salvate nella cartella C:\R\ il file <u>Densplot.csv</u>. Si tratta dello stesso file utilizzato per gli istogrammi, e contiene sesso (M o F), età (in anni) e concentrazione del colesterolo nel siero (in mg/dL) di 1000 soggetti. Aperto con Excel o con OpenOffice.org Calc appare così:

Sesso	Eta	Colest
Μ	13	172
F	14	132
М	14	176
F	15	156
F	16	190

Copiate e incollate nella Console di R ed eseguite questo codice un blocco alla volta per familiarizzare con il linguaggio soffermandovi sui singoli passaggi:

importa i dati in R
mydata <- read.table("c:/R/Densplot.csv", header=TRUE, sep=";")
traccia il kernel density plot</pre>

d <- density(mydata\$Colest) # dati di densità

plot(d, main = "Kernel density plot", xlab="Colesterolo totale in mg/dL", ylab = "Densità")
#

Ecco come appare il kernel density plot (Figura 4.5).

Potete migliorarne l'aspetto aggiungendo del colore:

traccia il kernel density plot colorato
windows() # apre una nuova finestra
d <- density(mydata\$Colest) # dati di densità
plot(d, main = "Kernel density plot colorato", xlab="Colesterolo totale in mg/dL", ylab = "Densità")
polygon(d, col="red", border="blue") # colora
#</pre>

Ecco come appare il kernel density plot, con un bordo di colore blu e il riempimento di colore rosso (**Figura 4.6**).

Figura 4.6 Kernel density plot colorato della distribuzione della concentrazione del colesterolo nel siero.

Dato che con l'istruzione **windows()** avete aperto una nuova finestra, spostatela o iconizzatela per vedere la finestra con il grafico precedente.

Ora copiate e incollate nella Console di R ed eseguite questo codice:

```
# importa i dati in R
mydata <- read.table("c:/R/Densplot.csv", header=TRUE, sep=";")
# traccia kernel density plot sovrapposti
# al termine fate click con il tasto sinistro del mouse nel punto in cui volete fare comparire la legenda
library(sm)
attach(mydata)
Sesso.f <- factor(Sesso, levels= c("F", "M"), labels = c("Donna", "Uomo")) # crea la legenda
sm.density.compare(Colest, Sesso, xlab="Colesterolo totale in mg/dL", ylab="Densità") # traccia il grafico
title(main="Distribuzione del colesterolo totale per sesso") # aggiunge il titolo
colfill<-c(2:(2+length(levels(Sesso.f)))) # posiziona la legenda
legend(locator(1), levels(Sesso.f), fill=colfill) # posiziona la legenda
#</pre>
```

Il codice fa una cosa piuttosto interessante: traccia due kernel density plot indipendenti e sovrapposti per i soggetti di sesso maschile (M) e di sesso femminile (F) e rimane in attesa. A questo punto posizionate il mouse dove volete che compaia la legenda, e fate click con il tasto sinistro per farla comparire. Ed ecco il risultato definitivo (**Figura 4.7**).

Distribuzione del colesterolo totale per sesso

Colesterolo totale in mg/dL

Figura 4.7 Kernel density plot sovrapposti della distribuzione della concentrazione del colesterolo nel siero in soggetti dei due sessi.

Se non siete soddisfatti della posizione delle legenda, sappiate che R non consente di muoverla. Dovete

rieseguire l'intero script e fare nuovamente click con il tasto sinistro del mouse nel punto in cui volete posizionare la legenda.

4.3. Box & whiskers plot

Ibox & whiskers plot (diagrammi a scatola e baffi) consentono di confrontare in modo immediato la distribuzione di più variabili. La scatola rappresenta la mediana (al centro), il primo quartile (margine inferiore della scatola) e il terzo quartile (margine superiore della scatola). La scatola include pertanto il 50% delle osservazioni. I baffi possono includono tutti i dati osservati oppure lasciare all'esterno i dati che presentano uno scostamento eccessivo (outliers). I box & whiskers plot forniscono una rappresentazione non-parametrica della distribuzione dei dati.

Scaricate e salvate nella cartella C:\R\ il file <u>Boxplot.csv</u>. I dati contenuti nel file sono i valori di concentrazione delle IgA (in g/L) in un gruppo di soggetti sani (Controlli) e di soggetti con cirrosi alcolica (AC), epatite cronica attiva (CAH), epatite cronica persistente (CPH), epatite alcolica non cirrotica (NCAH). Il contenuto del file aperto con un editor di testo come il Blocco note di Windows vi apparirà così:

Diagnosi; IqA Controlli;1.22 Controlli;2.37 NCAH; 7.44. NCAH; 3.75 CPH;2.45 CPH; 3.47 CAH; 2.35 CAH; 2.93 AC;3.51 AC;6.22

Nella prima riga sono riportati i nomi delle due variabili contenute nel file, rispettivamente la diagnosi clinica (Diagnosi) e la concentrazione delle IgA in mg/dL (IgA). Nelle righe successive sono riportati i valori delle due variabili per ciascuno dei casi osservati. Come separatore di campo viene utilizzato il punto e virgola (;).

Copiate e incollate nella Console di R ed eseguite questo codice:

con la prima riga sono importati i dati
mydata <- read.table("c:/R/Boxplot.csv", header=TRUE, sep=";")
con la seconda riga sono tracciati i boxplot delle IgA per ciascuna diagnosi
boxplot(IgA~Diagnosi, data=mydata, main="IgA nelle malattie croniche del fegato", xlab="Diagnosi
clinica", ylab="IgA in g/L", notch=FALSE, outline=TRUE, col="yellow")
#</pre>

Come vedete dal codice non è necessario specificare il numero di box & whiskers plot da tracciare. Il numero viene desunto direttamente dai dati, aggregando i valori di IgA per Diagnosi (IgA~Diagnosi) e quindi in questo caso è uguale al numero delle diverse diagnosi. Il parametro outline=TRUE indica di lasciare all'esterno dei baffi come punti separati i dati che presentano uno scostamento eccessivo (outliers) (Figura 4.8 a sinistra).

IgA nelle malattie croniche del fegato

IgA nelle malattie croniche del fegato

Figura 4.8 Box & whiskers plot della distribuzione delle IgA (in mg/dL) in alcune malattie epatiche, a sinistra (in giallo) senza incisure e a destra (in verde) con le incisure che indicano la significatività della differenza tra le mediane.

Ecco cosa accade riprendendo lo stesso codice ma questa volta con il parametro notch=TRUE:

```
# sono tracciati i boxplot delle IgA per ciascuna diagnosi con i notch (incisure)
windows() # apre una nuova finestra
```

```
boxplot(IgA~Diagnosi, data=mydata, main="IgA nelle malattie croniche del fegato", xlab="Diagnosi clinica", ylab="IgA in g/L", notch=TRUE, col="green")
```

#

In questo caso sono tracciati i boxplot delle IgA per ciascuna diagnosi con una incisura (**notch=TRUE**) che rappresenta i limiti di confidenza al 95% della mediana (**Figura 4.8 a destra**). Questo corrisponde ad un test per la significatività della differenza tra le mediane. Se le incisure di due boxplot non si sovrappongono la mediana delle due distribuzioni è significativamente diversa.

Il fatto interessante è che vediamo qui utilizzata una rappresentazione grafica per effettuare un test statistico (un confronto tra mediane). Notate anche il messaggio che compare nella Console di R:

```
Warning message:
In bxp(list(stats = c(2.14, 6.115, 7.95, 9.55, 14.31, 1.51, 2.065, :
    some notches went outside hinges ('box'): maybe set notch=FALSE
```

Il messaggio avverte che in alcuni casi le incisure sono uscite dai bordi della scatola (osservate i boxplot della CAH e della CPH). In questi casi il problema è determinato dal fatto che il numero delle osservazioni troppo ridotto determina un livello di incertezza che si estende al di la delle osservazioni. Vi sono solamente due modi per superare questo problema: rinunciare a trarre delle conclusioni da questi casi, o aumentare adeguatamente il numero delle osservazioni.

Ricordate infine che con l'istruzione **windows()** avete aperto una nuova finestra, quindi avrete due finestre, con altrettanti grafici, sovrapposte. Spostate o iconizzate la finestra del grafico con le incisure (box verdi) per vedere la finestra con il grafico precedente, quello senza incisure (box gialli).

4.4. Scatter plot

Potremmo chiamarlo semplicemente diagramma cartesiano, o diagramma di dispersione o grafico di dispersione (denominazione quest'ultima che rispecchia alla lettera quella inglese). Ma manteniamo anche questa volta per omogeneità la denominazione originale adottata in **R**.

Scaricate e salvate nella cartella C:\R\ il file <u>Scatterplot.csv</u>. Il file aperto con Excel o con OpenOffice.org Calc appare così, con una struttura molto tradizionale, una variabile per ogni colonna, nella prima riga i nomi delle variabili, nelle righe successive i loro valori:

GR	RGO	HB	НСТ	HBA2	MCV	HBF	MCH	RDW	FERRO
4.90	97	13.3	40.6	1.8	82.8	0.6	27.1	17.3	106
4.66	81	10.8	34.3	2.6	73.6	1.6	23.2	21.5	148
5.43	57	11.5	36.1	4.8	66.5	2.5	21.1	21.0	104
5.41	63	10.8	39.7	2.5	73.4	1.8	20.0	19.9	74
4.94	60	10.4	32.3	1.4	65.0	0.7	21.1	23.7	17
4.30	97	12.1	35.8	1.9	83.3	0.7	28.2	18.3	43

Le variabili contenute nel file sono la concentrazione degli eritrociti (GR) espressa in 10^12/L, la resistenza globulare osmotica (RGO) in %, la concentrazione dell'emoglobina (HB), in g/dL, l'ematocrito (HCT) in %, l'emoglobina A2 (HBA2) espressa in % dell'emoglobina totale, il volume globulare medio (MCV) in fL, l'emoglobina F (HBF) espressa in % dell'emoglobina totale, l'emoglobina corpuscolare media (MCH) in pg, l'ampiezza della distribuzione dei globuli rossi (RDW) espressa in % (come coefficiente di variazione), e infine la concentrazione del ferro nel siero in μ g/dL, misurati in 643 soggetti che includevano controlli sani, soggetti portatori di beta-talassemia, portatori di alfa-talassemia, e soggetti con anemia sideropenica.

Da notare che sono utilizzate la libreria **car** e la libreria **gclus** che, se non lo avete ancora fatto, dovete scaricare dal CRAN prima di eseguire l'esempio (in caso contrario si verificherà un errore nell'esecuzione del codice laddove è previsto l'utilizzo delle librerie). Copiate e incollate nella Console di R questo codice ed eseguitelo una blocco alla volta per familiarizzare con il linguaggio soffermandovi sui singoli passaggi:

```
# innanzitutto importiamo i dati
mydata <- read.table("c:/R/Scatterplot.csv", header=TRUE, sep=";")
# visualizziamo i dati
mydata
# traccia uno scatter plot semplice
attach(mydata)
plot(HBA2, FERRO, main="Scatter plot semplice con cerchi pieni", xlab="Emoglobina A2, % ",
ylab="Ferro, µg/dL", pch=19)
#
Viana prodette un complice diagramme certesiane che represente le concentrazione del form in funzione</pre>
```

Viene prodotto un semplice diagramma cartesiano che rappresenta la concentrazione del ferro in funzione della concentrazione di emoglobina A2 (Figura 4.9 a sinistra). I singoli punti sono rappresentati mediante cerchi pieni.

```
# cambia lo stile dei punti
windows() # apre una nuova finestra
plot(HBA2, FERRO, main="Scatter plot semplice con cerchi vuoti", xlab="Emoglobina A2, % ",
ylab="Ferro, μg/dL", pch=1)
#
```

Viene prodotto lo stesso diagramma cartesiano del caso precedente, ma questa volta il simbolo per

rappresentare i dati è rappresentato da un cerchio vuoto (Figura 4.9 a destra).

Figura 4.9 Due scatter plot della concentrazione dell'emoglobina A2 negli eritrociti (in % in ascisse) e del ferro nel siero (in ordinate in $\mu g/dL$). A sinsitra i punti sono rapresentati con cerchi pieni, a destra con cerchi vuoti.

Le potenzialità di **R** nella rappresentazione di scatter plot vanno però ben oltre:

una sola riga di codice traccia lo scatterplot con la matrice completa di tutte le variabili windows() # apre una nuova finestra

pairs(~GR+RGO+HB+HCT+HBA2+MCV+HBF+MCH+RDW+FERRO, data=mydata, main="Matrice degli scatter plot di tutte le variabili")

#

Viene generata la matrice degli scatter plot incrociando tra di loro tutte le variabili, e per ogni coppia di variabili viene effettuata una duplice rappresentazione, prima con l'una e poi con l'altra variabile in ascisse (Figura 4.10):

Figura 4.10 Matrice degli scatter plot di tutte le variabili contenute nel file di dati Scatterplot.csv che include controlli sani, soggetti portatori di beta-talassemia, portatori di alfa-talassemia, e soggetti con anemia sideropenica.

come al punto precedente, ma con matrice parziale limitata a quattro variabili windows() # apre una nuova finestra

pairs(~GR+HBA2+MCV+MCH,data=mydata, main="Matrice degli scatter plot di GR, HBA2, MCV, MCH") #

La matrice degli scatter plot viene limitata a eritrociti (GR), emoglobina A2 (HBA2), volume globulare medio (MCV) ed emoglobina corpuscolare media (MCH) (Figura 4.11):

Figura 4.11 Matrice degli scatter plot di globuli rossi (GR), emoglobina A2 (HBA2), volume globulare medio (MCV) ed emoglobina corpuscolare media (MCH).

altra rappresentazione, notare la nuova libreria car e il parametro diagonal = "none" library(car)

windows() # apre una nuova finestra

scatterplotMatrix(~GR+HBA2+MCV+MCH, reg.line=lm, smooth=TRUE, span=0.5, diagonal = "none", data=mydata, main="Matrice degli scatter plot con tendenze")

#

In questa rappresentazione ottenuta con l'impiego della libreria car sono riportate le curve che esprimono le tendenze medie dei dati a variare congiuntamente (Figura 4.12):

Figura 4.12 Matrice degli scatter plot di globuli rossi (GR), emoglobina A2 (HBA2), volume globulare medio (MCV) ed emoglobina corpuscolare media (MCH) con evidenziate le tendenze medie delle variabili a variare congiuntamente. La relazione tra MCV e MCH è chiaramente lineare.

come al punto precedente, notare il parametro diagonal = "histogram" library(car)

windows() # apre una nuova finestra

scatterplotMatrix(~GR+HBA2+MCV+MCH, reg.line=lm, smooth=TRUE, span=0.5, diagonal = "histogram", data=mydata, main="Matrice degli scatter plot con istogrammi")

#

Nella diagonale sono ora rappresentati gli istogrammi delle distribuzioni (Figura 4.13):

Matrice degli scatter plot con istogrammi

Figura 4.13 Matrice degli scatter plot di globuli rossi (GR), emoglobina A2 (HBA2), volume globulare medio (MCV) ed emoglobina corpuscolare media (MCH) con evidenziate le tendenze medie delle variabili a variare congiuntamente. La relazione tra MCV e MCH è chiaramente lineare. Nella diagonale sono stati riportati gli istogrammi.

Nel codice riportato sopra compare **diagonal = "histogram"**. Il parametro **diagonal** ammette, oltre al valore **"none"** (utilizzato per la rappresentazione della figura 4.12) e al valore **"histogram"** utilizzato nella figura precedente, anche i seguenti valori: **"boxplot"**, **"density"**, **"oned"**, **"qqplot"**. Provate ad utilizzarli modificando opportunamente il codice **R** riportato sopra per vedere cosa accade in questi casi.

Una nuova opportunità nella rappresentazione degli scatter plot sotto forma di matrici è offerta dalla libreria gclus con il codice che segue:

questo scatterplot necessita la libreria gclus library(gclus) windows() # apre una nuova finestra dta <- mydata[c(1,2,3,4,5,6,7,8,9,10)] # recupera i dati dalle colonne dta.r <- abs(cor(dta)) # calcola la correlazione dta.col <- dmat.color(dta.r) # applica i colori # riordina le variabili in modo che quelle meglio correlate siano vicine alla diagonale dta.o <- order.single(dta.r) cpairs(dta, dta.o, panel.colors=dta.col, gap=.5, main="Variabili ordinate in base alla correlazione")

Le variabili sono colorate e ordinate in base alla maggiore o minore correlazione esistente tra di loro, quelle meglio correlate sono collocate accanto alla diagonale, le altre sono collocate andando dalla diagonale verso la periferia via via che la correlazione diminuisce (**Figura 4.14**):

Variabili ordinate in base alla correlazione

Figura 4.14 Matrice degli scatter plot di tutte le variabili contenute nel file di dati Scatterplot.csv che include controlli sani, soggetti portatori di beta-talassemia, portatori di alfa-talassemia, e soggetti con anemia sideropenica. Gli scatter plot sono ordinati in base alla correlazione tra le variabili, dalla diagonale (quelle meglio correlate e in rosa) verso l'esterno (quelle peggio correlate in giallo chiaro).

A questo punto, dato che con le molteplici istruzioni **windows()** avete aperto via via nuove finestre che si sono andate sovrapponendo, ciascuna con il proprio grafico, spostate o iconizzate la finestra dell'ultimo grafico per vedere la finestra con il grafico precedente, e così via.

4.5. Scatter plot 3D

Caricate e salvate nella cartella C:\R\ il file <u>Scatterplot.csv</u>. Si tratta degli stessi dati utilizzati nella precedente parte dedicata agli scatter plot (bidimensionali), nella quale trovate i dettagli sui dati contenuti nel file. Da notare che per gli scatte plot tridimensionali (3D) sono utilizzate la libreria **scatterplot3d**, la libreria **rgl**, e la libreria **Rcmdr** che, se non lo avete ancora fatto, dovete scaricare dal CRAN prima di eseguire l'esempio (in caso contrario si verificherà un errore nell'esecuzione del codice laddove è previsto l'utilizzo delle librerie).

```
# innanzitutto importiamo i dati
mydata <- read.table("c:/R/Scatterplot.csv", header=TRUE, sep=";")
# visualizziamo i dati
mydata
# scatter plot tridimensionale (3D) semplice, necessita libreria apposita
library(scatterplot3d)
attach(mydata)
scatterplot3d(HBA2,GR,MCV, main="Scatter plot 3d semplice")
#</pre>
```

Lo scatter plot 3D è qui rappresentato in modo molto semplice (**Figura 4.15 a sinistra**). Si rimanda alla documentazione della libreria **scatterplot3d** le informazioni sui molti argomenti con cui questa rappresentazione può essere migliorata e personalizzata¹². Ad esempio con il codice che segue:

scatter plot 3D a colori con linee verticali, necessita libreria apposita
windows() # apre una nuova finestra

¹² La documentazione delle librerie o package di R che risiedono sul CRAN è in genere molto ben indicizzata dai motori di ricerca. Ad esempio in questo caso se nella finestra di ricerca di Google digitate "package scatterplot3d pdf" (senza le virgolette) trovate immediatamente il file con la documentazione di questo pacchetto.

library(scatterplot3d) attach(mydata) scatterplot3d(HBA2,GR,MCV, pch=16, highlight.3d=TRUE, type="h", main="Scatter plot 3d con linee delle coordinate")

potete tracciare la proiezione dei punti sulle coordinate orizzontali per meglio identificare la loro posizione (Figura 4.15 a destra).

Figura 4.15 Scatter plot 3D (x,y,z) della concentrazione dell'emoglobina A2 negli eritrociti (HBA2 in %, asse x), dei globuli rossi (GR in 10^{12} /litro, asse y) e volume globulare medio (MCV in fL, asse z), con i soli punti (a sinistra) e con la proiezioni dei punti sul piano delle coordinate orizzontali x,y (a destra).

Con la libreria **rgl** è possibile realizzare un grafico 3D che può essere ruotato al fine di orientare i dati secondo la prospettiva che li coglie al meglio:

```
# spinning 3D scatter plot, necessita libreria apposita
mydata <- read.table("c:/R/Scatterplot.csv", header=TRUE, sep=";")
library(rgl)
attach(mydata)
axes3d()
bg3d("white")
plot3d(HBA2,GR,MCV, type="p", col="red", size=3)
#</pre>
```

Se "afferrate" il grafico 3D facendo click con il tasto sinistro del mouse e lo tenete premuto senza rilasciarlo, potete ruotarlo a vostro piacimento (**Figura 4.16**).

A questo punto, dato che con le due istruzioni **windows()** avete aperto due nuove finestre, avrete un totale di tre finestre, con altrettanti grafici, sovrapposte. Spostate o iconizzate la finestra dell'ultimo grafico per vedere la finestra con il grafico precedente, e così via.

Per eseguire lo script che segue dovete chiudere completamente **R** e riaprirlo per inizializzarlo. Lo script prevede l'utilizzo della libreria **Rcmdr** che consente anche in questo caso di realizzare in grafico 3D che può essere ruotato al fine di orientare i dati secondo la prospettiva che li coglie al meglio:

spinning 3D scatter plot, necessita libreria apposita# innanzitutto importiamo i dati

mydata <- read.table("c:/R/Scatterplot.csv", header=TRUE, sep=";") library(Rcmdr) attach(mydata) scatter3d(HBA2,GR,MCV) #</pre>

Se "afferrate" il grafico 3D facendo click con il tasto sinistro del mouse e lo tenetelo premuto senza rilasciarlo, potete ruotarlo a vostro piacimento (**Figura 4.17**).

Figura 4.16 Scatter plot 3D realizzato con la libreria **rgl**. Se nella finestra grafica di **R** "afferrate" il grafico 3D facendo click con il tasto sinistro (tenete premuto il tasto senza rilasciarlo), potete ruotare il grafico a vostro piacimento

Figura 4.17 Scatter plot 3D realizzato con la libreria **Rcmdr**. Se nella finestra grafica di **R** "afferrate" il grafico 3D facendo click con il tasto sinistro (tenete premuto il tasto senza rilasciarlo), potete ruotare il grafico a vostro piacimento

4.6. Correlogrammi

Caricate e salvate nella cartella C:\R\ il file <u>Scatterplot.csv</u>. Si tratta degli stessi dati utilizzati nella precedente parte dedicata agli scatter plot (bidimensionali), nella quale trovate i dettagli sui dati contenuti nel file. Da notare che per realizzare i correlogrammi viene utilizzata la libreria **corrgram** che, se non lo avete ancora fatto, dovete scaricare dal CRAN prima di eseguire l'esempio (in caso contrario si verificherà un errore nell'esecuzione del codice).

Copiate e incollate nella Console di R ed eseguite questo codice:

```
# sono importati i dati
mydata <- read.table("c:/R/Statcorr.csv", header=TRUE, sep=";")
# correlogramma semplice
library(corrgram)
corrgram(mydata, order=TRUE, lower.panel=panel.shade, upper.panel=panel.pie, text.panel=panel.txt,
main="Correlogramma semplice")
#
```

Ecco come appare un correlogramma (**Figura 4.18**). L'ampiezza della colorazione della torta misura il coefficiente di correlazione (torta completamente bianca r = 0, torta completamente colorata r = 1), i valori dei coefficienti di correlazione vanno decrescendo dalla diagonale centrale verso la periferia, in blu sono riportati i valori positivi di r (le due grandezze aumentano e diminuiscono congiuntamente), in rosso i valori negativi di r (all'aumentare di una delle due grandezze l'altra diminuisce e viceversa).

Correlogramma semplice

Figura 4.18 Correlogramma con intensità della colorazione e superfice colorata proporzionali al valore del coefficiente di correlazione, in blu i valori positivi e in rosso i valori negativi del coefficiente di correlazione.

correlogramma con tendenze evidenziate

windows() # apre una nuova finestra

corrgram(mydata, order=TRUE, lower.panel=panel.ellipse, upper.panel=panel.pts, text.panel=panel.txt, diag.panel=panel.minmax, main="Correlogramma con tendenze evidenziate") #

In questo caso (**Figura 4.19**) nel quadrante superiore sono riportati i diagrammi di dispersione (scatter plot) e nel quadrante inferiore sono riportate le rette o le curve che esprimono le tendenze medie dei dati a variare congiuntamente.
Correlogramma con tendenze evidenziate

Figura 4.19 Correlogramma con evidenziate le tendenze medie delle variabili a variare congiuntamente.

correlogramma con i coefficienti di correlazione e i loro limiti di confidenza windows() # apre una nuova finestra

corrgram(mydata, lower.panel=panel.pts, upper.panel=panel.conf, diag.panel=panel.density, main="Correlogramma con i coefficienti di correlazione r")

#

In questa forma di correlogramma (**Figura 4.20**) nella diagonale sono riportate le distribuzioni delle variabili sotto forma di kernel density plot, nel quadrante inferiore i diagrammi di distribuzione (scatter plot) e nel quadrante superiore il valore del coefficiente di correlazione r con i limiti di confidenza al 95%.

Correlogramma con i coefficienti di correlazione r

Figura 4.20 Correlogramma con il valore del coefficiente di correlazione e i suoi limiti di confidenza al 95%.

In realtà anche un più tradizionale scatter plot (**Figura 4.21**) aiuta a cogliere le forti correlazioni che intercorrono tra emoglobina (HB) ed ematocrito (HCT) e tra emoglobina corpuscolare media (MCH) e volume globulare medio (MCV):

potete confermare le forti correlazioni tra HB/HCT e tra MCH/MCV anche con uno scatter plot library(car)

windows() # apre una nuova finestra

scatterplotMatrix(~GR+RGO+HB+HCT+HBA2+MCV+HBF+MCH+RDW+FERRO, reg.line=lm, smooth=TRUE, span=0.5, diagonal = "density", main="Matrice degli scatter plot", data=mydata) #

Matrice degli scatter plot

Figura 4.21 Una matrice degli scatter plot aiuta a valutare le possibili relazioni tra le variabili.

A questo punto, dato che con le tre istruzioni **windows()** avete aperto tre nuove finestre, avrete un totale di quattro finestre, con altrettanti grafici, sovrapposte. Spostate o iconizzate la finestra dell'ultimo grafico

per vedere la finestra con il grafico precedente, e così via.

Come ho evidenziato anche sul mio sito nella pagina su Teorema di Bayes e decisioni mediche¹³ il fatto che due variabili siano correlate non ci dice nulla sui possibili rapporti causa-effetto. Anzi, è possibile che siano "evidentemente" correlati dal punto di vista statistico fatti che in realtà sono completamente slegati tra di loro. Nonostante ciò quando utilizzata in modo appropriato la correlazione può essere utile. Ed è quello che accade quando, come nel casi dei correlogrammi, il coefficiente di correlazione viene integrato con una rappresentazione grafica dei dati che aiuta a fare emergere i legami fra le variabili in esame.

4.7. Curve ROC

Scaricate e salvate nella cartella C:\R\ i file <u>CurveROC.csv</u> e <u>CurveROCbis.csv</u>. Il contenuto di entrambi i file aperto con un editor di testo come il Blocco note di Windows vi apparirà così (cambiano solamente i valori), con i nomi delle variabili nella prima riga e i dati dei singoli casi nelle righe successive:

predictions; labels 19;0 22;0 22;1 24;1 24;1 26;0

La variabile "predictions" contiene i valori misurati (in questo caso il risultato numerico di una analisi di laboratorio) mentre la variabile "labels" contiene la classificazione dei casi, e riporta 0 per i controlli (soggetti sani) e 1 per i soggetti malati. Come separatore di campo viene utilizzato il punto e virgola (;).

Da notare che sono utilizzate la libreria **pROC** e la libreria **sm** che, se non lo avete ancora fatto, dovete scaricare dal CRAN prima di eseguire l'esempio (in caso contrario si verificherà un errore nell'esecuzione del codice laddove è previsto l'utilizzo delle librerie). Copiate e incollate nella Console di R questo codice ed eseguitelo soffermandovi sui singoli passaggi:

```
# sono importati i dati
mydata <- read.table("c:/R/CurveROC.csv", header=TRUE, sep=";")
# nomi delle variabili in mydata
names(mydata)
# lista dei primi 10 casi di mydata
head(mydata, n=10)
# lista degli ultimi 5 casi di mydata
tail(mydata, n=5)
# utilizza la libreria pROC
library(pROC)
attach(mydata)
# traccia la curva ROC e calcola l'area sotto la curva (auc)
roc(mydata$labels, mydata$predictions, smooth = FALSE, auc = TRUE, ci = FALSE, plot = TRUE, identity =
TRUE, main = "Curva ROC", xlab="1-specificità", ylab = "Sensibilità")
#
Dopo avere con la prima riga di codice importato i dati sono mostrati (names(mydata)) i nomi delle
variabili:
```

[1] "predictions" "labels"

¹³ <u>http://www.bayes.it/html/decisioni_mediche.html</u>

Quindi sor	no mostrati (<mark>hea</mark>	ad(mydat	ta, n=10)) i primi 10 dati importati:
predictio	ons labels		
1	19	0	
2	22	0	
3	22	1	
4	24	1	
5	24	1	
6	26	0	
7	27	1	
8	28	0	
9	29	0	
10	29	0	

E infine sono mostrati (tail(mydata, n=5)) gli ultimi cinque dati importati:

	predictions	labels
1691	235	1
1692	237	1
1693	237	1
1694	242	1
1695	242	1

Infine viene tracciata la curva ROC e viene calcolata l'area sotto la curva (area under the curve ovvero a.u.c.)

Data: mydata\$predictions in 853 controls (mydata\$labels 0) < 842 cases
(mydata\$labels 1).
Area under the curve: 0.9633</pre>

Ecco il grafico della curva ROC che viene prodotto (Figura 4.22):

Figura 4.22 Curva ROC ricavata dalle distribuzioni dei risultati di un test di laboratorio in soggetti sani e malati. Il grafico è realizzato mediante la libreria **pROC**.

Con il blocco di codice che segue sono infine calcolate le statistiche della curva ROC:

intervallo di confidenza al 95% dell'area sotto la curva, metodo di DeLong ci.auc(mydata\$labels, mydata\$predictions, conf.level = 0.95) # intervallo di confidenza al 95% della sensibilità per valori di specificità da 0 a 1 con passo 0.1 ci.se(mydata\$labels, mydata\$predictions, specificities=seq(0,1,.1), conf.level = 0.95, boot.n = 100) # intervallo di confidenza al 95% della specificità per valori di sensibilità da 0 a 1 con passo .1 ci.sp(mydata\$labels, mydata\$predictions, sensitivities=seq(0,1,.1), conf.level = 0.95, boot.n = 100) # calcola il miglior valore soglia tra sani e malati e l'intervallo di confidenza al 95% della sensibilità e della specificità corrispondenti ci thresholds/mydata\$labels, mydata\$predictions, thresholds="best", conf.level = 0.95, boot.n = 100)

ci.thresholds(mydata\$labels, mydata\$predictions, thresholds="best", conf.level = 0.95, boot.n = 100) # calcola per le principali grandezze i valori corrispondenti al valore soglia tra sani e malati myroc <-roc(mydata\$labels, mydata\$predictions, plot = FALSE)

```
coords(myroc, "best", best.method = "youden", ret=c("threshold", "specificity", "sensitivity", "accuracy",
"tn", "tp", "fn", "fp", "npv", "ppv"))
```

#

Innanzitutto viene calcolato l'intervallo di confidenza al 95% dell'area sotto la curva impiegando il metodo di DeLong:

95% CI: 0.9537-0.9729 (DeLong)

Quindi viene riportata una tabella con la mediana e gli intervalli di confidenza al 95% della sensibilità per valori di specificità che vanno da 0 a 1 con passo 0.1 (ovviamente è facile ripetere i calcoli cambiando passo a piacimento):

```
95% CI (100 stratified bootstrap replicates):
 sp se.low se.median se.high
 0.0 1.0000
              1.0000 1.0000
 0.1 0.9844
              0.9916 0.9964
              0.9869 0.9923
 0.2 0.9780
 0.3 0.9734
              0.9831
                      0.9912
 0.4 0.9692
              0.9807
                      0.9882
 0.5 0.9628
              0.9739
                      0.9831
 0.6 0.9596
              0.9708
                      0.9810
 0.7 0.9437
              0.9565
                      0.9695
              0.9502 0.9648
 0.8 0.9350
 0.9 0.9035
              0.9206
                      0.9370
 1.0 0.6288
              0.6758
                      0.7732
```

Quindi viene riportata una tabella con la mediana e gli intervalli di confidenza al 95% della speciificità per valori di sensibilità che vanno da 0 a 1 con passo 0.1 (anche in questo caso è facile ripetere i calcoli cambiando passo a piacimento):

```
95% CI (100 stratified bootstrap replicates):
 se sp.low sp.median sp.high
 0.0 1.0000 1.00000 1.000000
 0.1 1.0000 1.000000 1.000000
 0.2 1.0000 1.000000 1.000000
 0.3 1.0000 1.00000 1.000000
 0.4 1.0000 1.000000 1.000000
 0.5 1.0000
            1.000000 1.000000
            1.000000 1.000000
 0.6 1.0000
 0.7 0.9965 0.998800 1.000000
 0.8 0.9894
            0.994100 0.999400
            0.942500 0.964600
 0.9 0.9062
            0.001172 0.005305
 1.0 0.0000
```

Successivamente sono calcolati la mediana e l'intervallo di confidenza al 95% della sensibilità e della specificità in corrispondenza del miglior valore soglia tra sani e malati:

95% CI (100 stratified bootstrap replicates): thresholds sp.low sp.median sp.high se.low se.median se.high 74.5 0.9297 0.9484 0.9619 0.877 0.8955 0.9139 Infine calcola per le principali grandezze i valori corrispondenti al valore soglia tra sani e malati:

threshold specificity sensitivityaccuracytntp74.50000000.94841740.89429930.9215339809.0000000753.0000000fnfpnpvppv89.000000044.00000000.90089090.9447930

ove tn sono i veri negativi (true negative), tp sono i veri positivi (true positive), fn sono in falsi negativi (false negative), fp sono i falsi positivi (false positive), npv è il valore predittivo del test negativo (negative predictive value) e ppv è il valore predittivo del test positivo (positive predictive value).

Per ulteriori approfondimenti si rimanda alla documentazione della libreria **pROC**.

Un grafico che mostra, sovrapposte, le distribuzioni dei valori nei sani e nei malati aiuta certamente nella lettura dei dati (Figura 4.23):

traccia kernel density plot sovrapposti dei valori osservati per controlli sani (0) e malati (1)

library(sm)

attach(mydata)

attenzione il primo "labels" è la variabile che contiene i valori osservati il secondo "labels" sono le etichette da applicare come legenda

myplot <- factor(labels, levels= c("0","1"), labels = c("Sani", "Malati"))</pre>

traccia i due grafici sovrapposti

windows() # apre una nuova finestra

sm.density.compare(predictions, labels, xlab="Valori osservati", ylab="Densità")

title(main="Distribuzione dei valori nei due gruppi")

aggiunge la legenda: posizionarsi dove la si desidera fare comparire e fare click con tasto sinistro del mouse

colfill<-c(2:(2+length(levels(myplot))))

legend(locator(1), levels(myplot), fill=colfill)

#

Il codice traccia due kernel density plot indipendenti e sovrapposti dei valori osservati nei controlli sani e nei malati e rimane in attesa. A questo punto posizionate il mouse dove volete che compaia la legenda, e fate click con il tasto sinistro per farla comparire.

A questo punto ricordate che con l'istruzione windows() avete aperto una nuova finestra, quindi avete un totale di due finestre, con altrettanti grafici, sovrapposte. Spostate o iconizzate la finestra dell'ultimo grafico per vedere la finestra con il grafico precedente.

Ora copiate e incollate nella Console di R ed eseguite questo codice, con il quale sono importate due serie di dati, le cui curve ROC sono poi sovrapposte sullo stesso sistema di assi cartesiani (**Figura 4.24**):

```
# importa i dati per le due curve ROC
mydata <- read.table("c:/R/CurveROC.csv", header=TRUE, sep=";")
mydatabis <- read.table("c:/R/CurveROCbis.csv", header=TRUE, sep=";")
library(pROC)
# traccia la prima curva ROC
roc(mydata$labels, mydata$predictions, smooth = FALSE, auc = TRUE, ci = FALSE, plot = TRUE, identity =
FALSE, main = "Curve ROC sovrapposte", xlab="1-specificità", ylab = "Sensibilità")
# traccia la seconda curva ROC
roc(mydatabis$labels, mydatabis$predictions, smooth = FALSE, auc = TRUE, ci = FALSE, plot = TRUE, add =
TRUE, col = "red", lty = 4)
#
```

L'argomento add = TRUE consente, quando viene tracciata la seconda curva ROC, di sovrapporla alla prima.

Inoltre specificando il colore col = "red" e la linea tratteggiata lty = 4 le due curve ROC possono essere meglio distinte.

Rimando chi fosse interessato ad approfondire questo tema al paragrafo del sito che ho preparato per illustrare basi storiche e significato delle curve ROC.

Figura 4.23 Kernel density plot sovrapposti delle distribuzioni dei risultati di un test di laboratorio in soggetti sani e malati. I dati sono quelli della curva ROC di figura **4.22**.

Figura 4.24 Due curve ROC sovrapposte consentono di evidenziare come il test con la curva in nero continuo fornisca una informazione maggiore di quello con la curva ROC in colore rosso trattegiato.

5. R problemi scelti

5.1. Confronto tra due metodi analitici

La regressione lineare standard non è adatta al confronto tra due variabili legate tra loro da una relazione lineare se anche la variabile indipendente è affetta da errore di misura. Ed è proprio quello che accade quando si confrontano tra di loro i risultati di due metodi analitici per la determinazione della stessa sostanza. In questo caso viene suggerito una approccio che prevede l'ispezione dei dati mediante il diagramma di Bland e Altman, e l'impiego della regressione lineare non parametrica di Passing e Bablok, che assume che entrambe le variabili siano affette da un errore di misura. L'approccio globale al confronto tra due metodi con **R** è stato sviluppato con la libreria **MethComp**. Se non la trovate sul CRAN, potete scaricarla dal sito di R-Forge¹⁴ e installarla sul vostro PC copiando e incollando nella Console di R questa riga di comando:

```
install.packages("MethComp", repos="http://R-Forge.R-project.org")
```

Per utilizzare la libreria **MethComp** la struttura dei dati deve prevedere obbligatoriamente il campo **meth** (il metodo di analisi), il campo **item** (il numero progressivo del campione analizzato), il campo **repl** (il numero del replicato) e il campo **y** (il risultato numerico dell'analisi).

Create la cartella C:\R\ e salvate in questa cartella il file <u>MethComp.csv</u>. Come vedete contiene i dati relativi al confronto tra due metodi analitici organizzati esattamente come previsto dalla libreria, anche se in questo caso il numero del replicato è sempre uguale a 1 dato che non erano previsti analisi in replicato:

meth	item	repl	У
Metodo x	1	1	4
Metodo y	1	1	3
Metodo x	2	1	4
Metodo y	2	1	3.9
Metodo x			
Metodo y			
Metodo x	188	1	115.4
Metodo y	188	1	110.2
Metodo x	189	1	156
Metodo y	189	1	152

Copiate e incollate nella Console di R ed eseguite questo codice: #

```
mydata <- read.table("c:/R/MethComp.csv", header=TRUE, sep=";")
library(MethComp)
newdata <- Meth(mydata) # crea un oggetto Meth per la libreria
plot.Meth(newdata)
```

#

Vedete la sintesi grafica dei dati del confronto tra metodi., con il diagramma di bland e Altman in alto a destra e la regressione lineare non parametrica di Passing e Bablok in basso a sinistra (**Figura 5.1**).

¹⁴ <u>https://r-forge.r-project.org/</u>

Figura 5.1 Grafico di Bland e Altman (in alto a destra) e regressione lineare non parametrica di Passing a Bablok (in basso a sinistra) in un confronto tra due metodi analitici realizzato mediante la libreria **MethComp**.

Ora copiate e incollate nella Console di R questo codice #

```
predef <- par()$mar # salva i valori predefiniti dei margini
par(mar = c(5,5,5,4)) # imposta margini più ampi
BA.plot(newdata, main = "Grafico di Bland e Altman")
#</pre>
```

Per questo grafico è necessaria l'impostazione dei margini, il relativo problema viene illustrato al successivo paragrafo 5.4.

Al momento della creazione dell'oggetto Meth per la libreria viene fornita una breve sintesi dei dati:

Metodo x189189189431.0156Metodo y189189189336.3152

Cona la successiva e terza riga di codice viene tracciato il diagramma di Bland e Altman (**Figura 5.2**). Da notare un fatto che in genere viene tralasciato nella rappresentazione del diagramma, ma che invece è della massima importanza: i limiti di confidenza al 95% della media delle differenze, che invece sonoprevisti nella libreria MethComp.

Figura 5.2 Diagramma di Bland e Altman con la media e i limiti di confidenza al 95% della media.

Infine copiate e incollate nella Console di R questo codice:

#

```
print(PBreg(newdata)) # statistiche della regressione di Passing e Bablok
par(mar = predef) # ripristina i valori predefiniti dei margini
plot(PBreg(newdata), main = "Regressione di Passing e Bablok") # traccia il grafico
#
```

Come prima cosa vedete le statistiche della regressione:

```
> print(PBreg(newdata)) # statistiche della regressione di Passing e
Bablok
Passing-Bablok linear regression of Metodo y on Metodo x
Observations read: 189, used: 189
Slopes calculated: 17766, offset: 1134
                      2.5%CI 97.5%CI
          Estimate
Intercept 3.9340857 2.1687117 5.37963
Slope
         0.9888262 0.9296296 1.06135
Unadjusted summary of slopes:
  Min. 1st Qu. Median
                          Mean 3rd Qu.
                                                  NA's
                                          Max.
   -335
             0
                     1
                           Inf
                                     1
                                           Inf
                                                     1
Summary of residuals:
   Min. 1st Qu. Median
                              Mean 3rd Ou.
                                                Max.
                          0.7072
-38.7600 -4.6960
                   0.0000
                                     7.4890
                                             30.2100
Test for linearity: (passed)
```

Per l'intercetta e per il coefficiente angolare sono riportati i limiti di confidenza al 95%, che consentono di effettuare immediatamente la valutazione della significatività della differenza dell'intercetta da 0 (zero è il valore atteso dell'intercetta se tra i due metodi non vi è errore sistematico di tipo costante) e del coefficiente angolare da 1 (uno è il valore atteso del coefficiente angolare se tra i due metodi non vi è errore sistematico di tipo proporzionale).

Oltre alle statistiche vedete il grafico con la retta teorica di equivalenza metodo x = metodo y tratteggiata, e con la retta trovata che conferma graficamente l'esistenza tra i due metodi di una differenza sistematica di tipo costante (**Figura 5.3**), che ovviamene necessita di interpretazione dal punto di vista analitico.

Regressione di Passing e Bablok

5.2. Kernel density plot sovrapposti

Abbiamo già visto (al paragrafo 4.2.) il codice **R** per tracciare due kernel density plot sovrapposti. Qui ne sovrapporremo cinque.

Utilizziamo gli stessi dati forniti per tracciare i box & whiskers plot (paragrafo 4.3). Se non l'avete già fatto, scaricate dal CRAN la libreria **sm**. Quindi create la cartella C:\R\ e salvate in questa cartella il file <u>Boxplot.csv</u>. Copiate e incollate nella Console di R ed eseguite questo codice:

```
#
mydata <- read.table("c:/R/Boxplot.csv", header=TRUE, sep=";")
library(sm)
attach(mydata)
         <-
               factor(Diagnosi,
                                                c("AC","CAH","Controlli","CPH","NCAH"),
myplot
                                  levels
                                           =
                                                                                             labels
                                                                                                      =
c("AC","CAH","Controlli","CPH","NCAH"))
sm.density.compare(IgA, Diagnosi, xlab="IgA in g/L", ylab="Frequenza (kernel density)")
title(main="IgA nelle malattie croniche del fegato")
# aggiunge la legenda: posizionarsi dove la si desidera fare comparire e fare click con tasto sinistro del
mouse
```

```
colfill<-c(2:(2+length(levels(myplot))))
```

legend(locator(1), levels(myplot), fill=colfill)

#

Ecco i cinque kernel density plot sovrapposti che vengono tracciati (**Figura 5.4**). Anche questo codice come quelli che seguono è da tesaurizzare, per riadattarlo ad eventuali future esigenze.

IgA nelle malattie croniche del fegato

Figura 5.4 Kernel density plot sovrapposti possono aiutare nello studio comparativo di più distribuzioni.

5.3. Identificare i punti in uno scatter plot

Questo codice risponde a un problema banale, ma che si pone sovente: questo punto che si discosta così tanto dagli altri a quale dato corrisponde?

Create la cartella C:\R\ e salvate in questa cartella il file <u>Scatterplot.csv</u>. Copiate e incollate nella Console di R ed eseguite questo codice:

#

```
mydata <- read.table("c:/R/Scatterplot.csv", header=TRUE, sep=";")</pre>
```

attach(mydata)

plot(HB, HCT, main="Identifica punti in uno scatterplot", xlab="Emoglobina, mg/dL ", ylab="Ematocrito, %", pch=1)

```
identify(HB, HCT, plot = TRUE, atpen = FALSE, offset = 0.5, tolerance = 0.25, locatorBell = TRUE)
#
```

Posizionatevi nelle vicinanze del punto cui siete interessati e che volete identificare: poco sopra, appena sotto, un poco a sinistra o a destra, e fate click con il tasto sinistro del mouse: nella posizione prescelta comparirà il numero del dato. Per terminare selezionate Stop con il tasto destro del mouse. Il risultato è riportato nella **Figura 5.5**.

Figura 5.5 Un semplice script consente, dopo avere tracciato uno scatter plot, di identificare il numero del dato che corrisponde ad uno specifico punto con un click del mouse.

5.4. Adattare i margini a una immagine

Chi si è interessato al problema del confronto tra metodi (paragrafo 5.1.) avrà certamente notato questa strana riga di codice con il relativo commento:

par(mar = c(5,5,5,4)) # imposta margini più ampi

Per avere la spiegazione dovete scaricate la libreria **MethComp**. Se non la trovate sul CRAN, potete scaricarla dal sito di R-Forge¹⁵ e installarla sul vostro PC copiando e incollando nella Console di R questa riga di comando:

```
install.packages("MethComp", repos="http://R-Forge.R-project.org")
```

Create la cartella C:\R\ e salvate in questa cartella il file <u>MethComp.csv</u>. Copiate e incollate nella Console di R questo codice ed eseguitelo:

Ora copiate e incollate nella Console di R ed eseguite questo codice: #

mydata <- read.table("c:/R/MethComp.csv", header=TRUE, sep=";")</pre>

16

¹⁵ <u>https://r-forge.r-project.org/</u>

```
      library(MethComp)

      newdata <- Meth(mydata) # crea un oggetto Meth per la libreria</td>

      predef <- par()$mar # salva i valori predefiniti dei margini</td>

      par(mar = c(5,5,5,4)) #imposta i nuovi margini

      BA.plot(newdata, main = "Grafico di Bland e Altman")

      par(mar = predef) # ripristina i valori predefiniti dei margini

      #

      Come vedete i margini sono ora sufficienti a contenere i valori sulla scala di destra.

      -24.92
```

5.5. Inserire più grafici in una immagine

Anche questo è un problema banale ma che può portare a perdersi tra migliaia di librerie e i milioni di righe di codice di **R** senza trovare la soluzione.

Create la cartella C:\R\ e salvate in questa cartella il file <u>Verigauss.csv</u>. Contiene i dati di sesso, età e concentrazione di colesterolo totale, colesterolo HDL, colesterolo LDL e trigliceridi che abbiamo già incontrato:

Sesso	Eta	Colesterolo	HDL	LDL	Trigliceridi
М	33	56	44	9	19
М	62	60	5		
F	90	70	30		99
М	75	80	53		
F	32	82	51		23
М	71	84	25		
F					
F					

Copiate e incollate nella Console diR ed eseguite questo codice: #

```
mydata <- read.table("c:/R/Verigauss.csv", header=TRUE, sep=";")
newdata <- na.omit(mydata) #esclude i casi con dati mancanti
tri <- newdata$Trigliceridi
par(mfrow=c(2,2))
hist(tri, main="Istogramma dei dati", xlab="Trigliceridi in mg/dL", ylab = "Frequenza")
plot(density(tri), main="Distribuzione di densità dei dati", xlab="Trigliceridi in mg/dL", ylab =
"Frequenza")
plot(ecdf(tri), main="Distribuzione cumulativa empirica", xlab="Trigliceridi in mg/dL", ylab = "Frequenza")</pre>
```

qqnorm((tri-mean(tri))/sd(tri), main="Quantili campionari vs. teorici", xlab="Quantili teorici", ylab = "Quantili campionari")

abline (0,1) # linea di allineamento teorico di dati gaussiani

#

Il comando chiave è "par(mfrow=c(2,2))" che predispone la matrice 2 righe x 2 colonne da riempire con i quattro grafici (hist, plot(density, plot(ecdf e qqnorm) per riga, ovvero da sinistra in alto a destra in basso (Figura 5.6).

Figura 5.6 Con R è possibile raggruppare più grafici all'interno di una stessa figura.

Le seguenti tre varianti sul tema non sono rappresentate e sono lasciate come esercizio per familiarizzare con il tema e magari trovare altre soluzioni.

La prima variante inserisce due grafici in una riga e due colonne:

```
#
par(mfrow=c(1,2))
hist(tri, main="Istogramma dei dati", xlab="Trigliceridi in mg/dL", ylab = "Frequenza")
plot(density(tri), main="Distribuzione di densità dei dati", xlab="Trigliceridi in mg/dL", ylab =
"Frequenza")
#
```

Questa seconda variante inserisce tre grafici, il primo occupa riga 1 / colonne 1 e 2, il secondo riga 2 / colonna 1, il terzo riga 2 / colonna 2:

```
#
layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE))
hist(tri, main="Istogramma dei dati", xlab="Trigliceridi in mg/dL", ylab = "Frequenza")
plot(density(tri), main="Distribuzione di densità dei dati", xlab="Trigliceridi in mg/dL", ylab =
"Frequenza")
plot(ecdf(tri), main="Distribuzione cumulativa empirica", xlab="Trigliceridi in mg/dL", ylab = "Frequenza
cumulativa")
#
```

Infine questa terza variante inserisce tre grafici, il primo occupa riga 1 / colonna 1, il secondo riga 2 / colonna 1, il terzo colonna 2 / righe 1 e 2: #

layout(matrix(c(1,3,2,3), 2, 2, byrow = TRUE), widths=c(1,1), heights=c(1,1))

hist(tri, main="Istogramma dei dati", xlab="Trigliceridi in mg/dL", ylab = "Frequenza") plot(density(tri), main="Distribuzione di densità dei dati", xlab="Trigliceridi in mg/dL", ylab = "Frequenza") plot(ecdf(tri), main="Distribuzione cumulativa empirica", xlab="Trigliceridi in mg/dL", ylab = "Frequenza cumulativa")

#

APPENDICI

A1. Tabella dei colori di R

In **R** i colori sono ordinati secondo una numerazione progressiva da 1 a 657, e a ciascuno di essi viene associato un codice descrittivo: ad esempio il colore 8 è denominato aquamarine1.

A ciascun colore viene associato anche un codice in formato esadecimale, che per il colore aquamarine1 è #7FFFD4. Caratteristica fondamentale della codifica dei colori con **R** è che sia il codice descrittivo sia il codice esadecimale possono essere utilizzati indifferentemente con il parametro **col=** per definire il colore, per esempio di un grafico.

Infine a ciascun colore viene associata una tripletta di numeri che indica, con un numero compreso tra 0 e 255 per ciascun componente della tripletta, la quantità dei tre colori fondamentali della sintesi additiva dei colori, ottenuta sommando rosso (Red), verde (Green) e blu (Blue). Indica cioè quanto ciascuno dei tre colori fondamentali contribuisce a formare il colore in questione. Per esempio per il colore aguamarine1 ovvero #7FFFD4 la tripletta è 127 255 212 a indicare che il colore in questione è formato dalla somma di 127 parti di rosso, 255 parti di verde e di 212 parti di blu "puri" della tabella dei colori di **R**.

Nell'esempio che segue con la prima riga di codice sono generati 10000 valori di deviata normale standardizzata, corrispondenti a una distribuzione gaussiana con media 0 e deviazione standard 1. Con la seconda riga di codice viene tracciato un istogramma di colore **aquamarine1**, quindi viene aperta una nuova finestra grafica e con la quarta e ultima riga di codice viene tracciato un istogramma di colore **#7FFFD4**:

#

```
x=rnorm(10000) # genera 10000 valori distribuiti in modo gaussiano
hist(x, breaks=100, col="aquamarine1", main="colore = aquamarine1")
windows() # apre una nuova finestra
hist(x, breaks=100, col="#7FFFD4", main="colore = #7FFFD4")
#
```

Se spostate la seconda finestra e la affiancate alla prima potete constatare che il colore, a conferma di quanto si ricava dalla tabella dei colori di **R**, è identico.

Anche questo esempio dimostra come **col="orchid1**" (istogramma della seconda riga) e **col="#FF83FA"** (istogramma della quarta riga) sono espressioni equivalenti:

```
#
x=rnorm(10000) # genera 10000 valori distribuiti in modo gaussiano
hist(x, breaks=100, col="orchid1", main="colore = orchid1")
windows() # apre una nuova finestra
hist(x, breaks=100, col="#FF83FA", main="colore = #FF83FA")
#
```

Infatti se dopo averere eseguito il codice spostate la seconda finestra e la affiancate alla prima potete constatare che il colore dei due istogrammi, a conferma di quanto si ricava dalla tabella dei colori di **R**, è identico.

Nelle pagine seguenti è riportata la tabella dei colori di R.

R colori 1-100

1	white	*******	255 255 255	51 chartrouse4	#450000	60 120 0
	white	*****	255 255 255	51 chardedse4	#450D00	09 139 0
2	aliceblue	#FOFSFF	240 248 255	52 chocolate	#D2691R	210 105 30
3	antiquewhite	#FAEBD7	250 235 215	53 chocolate1	#FF7F24	255 127 36
4	antiquewhite1	#FFBFDB	255 239 219	54 chocolate2	#BE7621	238 118 33
5	antiquewhite2	#BEDFCC	238 223 204	55 chocolate3	#CD661D	205 102 29
6	antiquewhite3	#CDC0B0	205 192 176	56 chocolate4	#8B4513	139 69 19
7	antiquewhite4	#8B8378	139 131 120	57 coral	#FF7F50	255 127 80
8	aquamarine	#7FFFD4	127 255 212	58 coral1	#FF7256	255 114 86
9	aquamarine1	#7FFFD4	127 255 212	59 coral2	#EE6A50	238 106 80
10	aquamarine2	#76BEC6	118 238 198	60 coral3	#CD5B45	205 91 69
11	aguamarine3	#66CDAA	102 205 170	61 coral4	#8B3E2F	139 62 47
12	aquamarine4	#459B74	69 139 116	62 comfowerblue	#649580	100 149 237
12	aquantanite	# 100B74	240 255 255	62 connoille	APPPODC	255 249 220
13	azure	#POPPPP	240 255 255	65 cornslik	#FFFODC	255 248 220
14	azure1	#FOFFFF	240 255 255	64 cornsilk1	#FFF8DC	255 248 220
15	azure2	#EORERE	224 238 238	65 cornsilk2	#EEESCD	238 232 205
16	azure3	#C1CDCD	193 205 205	66 cornsilk3	#CDC8B1	205 200 177
17	azure4	#838B8B	131 139 139	67 cornsilk4	#8B8878	139 136 120
18	beige	#F5F5DC	245 245 220	68 cyan	#00FFFF	0 255 255
19	bisque	#FFE4C4	255 228 196	69 cyan1	#00FFFF	0 255 255
20	bisque1	#FFE4C4	255 228 196	70 cyan2	#00EEEE	0 238 238
21	bisque2	#EED5B7	238 213 183	71 cyan3	#00CDCD	0 205 205
22	bisque3	#CDB79E	205 183 158	72 cyan4	#008B8B	0 139 139
23	bisque4	#8B7D6B	139 125 107	73 darkblue	#00008B	0 0 139
24	black	#000000	0 0 0	74 darkcyan	#008B8B	0 139 139
25	blanchedalmond	#FFEBCD	255 235 205	75 darkgoldenrod	#B8860B	184 134 11
26	blue	#0000FF	0 0 255	76 darkgoldenrod1	#FFB90F	255 185 15
27	blue1	#0000FF	0 0 255	77 darkgoldenrod?	HERADOR	238 173 14
28	blue?	#000077	0 0 239	78 darkgoldenrod3	#004500	205 149 12
20	blue2	#0000CD	0 0 200	70 darkgoldenrod4	#0D/E00	120 101 9
20	blue5	=000000	0 0 200	90 darkgrav	#202020	100 100 100
30	blue4	#00008B	0 0 139	80 darkgray	#A9A9A9	169 169 169
31	blueviolet	#885BB5	138 43 226	81 darkgreen	#006400	0 100 0
32	brown	#A52A2A	165 42 42	82 darkgrey	#A9A9A9	169 169 169
33	brown1	#FF4040	255 64 64	83 darkkhaki	#BDB76B	189 183 107
34	brown2	#EE3B3B	238 59 59	84 darkmagenta	#8B008B	139 0 139
35	brown3	#CD3333	205 51 51	85 darkolivegreen		85 107 47
36	brown4	#8B2323	139 35 35	86 darkolivegreen1	#CAFF70	202 255 112
37	burlywood	#DEB887	222 184 135	87 darkolivegreen2	#BCEE68	188 238 104
38	burlywood1	#FFD39B	255 211 155	88 darkolivegreen3	#A2CD5A	162 205 90
39	burlywood2	#EEC591	238 197 145	89 darkolivegreen4	#6E8B3D	110 139 61
40	burlywood3	#CDAA7D	205 170 125	90 darkorange	#FF8C00	255 140 0
41	burlywood4	#8B7355	139 115 85	91 darkorange1	#FF7F00	255 127 0
42	cadetblue	#5F9EA0	95 158 160	92 darkorange2	#EE7600	238 118 0
43	cadetblue1	#98F5FF	152 245 255	93 darkorange3	#CD6600	205 102 0
44	cadetblue2	#SEESEE	142 229 238	94 darkorange4	#8B4500	139 69 0
45	cadetblue3	#7AC5CD	122 197 205	95 darkorchid	#993200	153 50 204
40	cadetblued	#529600	02 124 120	96 darkorshidt	HDESEE	101 62 264
40	cadelblues	#03000B	107 055 0	07 derkershid?	HDF3BFF	170 50 200
47	chartreuse	#722200	127 255 0	07 darkorchid2	HORSABB	154 50 005
48	cnartreuse1	# /FFF00	127 255 0	ee darkorchid3	#9A32CD	154 50 205
49	chartreuse2	#.46BB00	118 238 0	99 darkorchid4	#68228B	104 34 139
50	chartreuse3		102 205 0	100 darkred	#8B0000	139 0 0

R colori 101-200

101 darksalmon	#E9967A	233 150 122	151 goldenrod4	#8B6914	139 105 20
102 darkseagreen	#8FBC8F	143 188 143	152 gray	#BEBEBE	190 190 190
103 darkseagreen1	#C1FFC1	193 255 193	153 gray0	4000000	0 0 0
104 darkseagreen2	#B4EEB4	180 238 180	154 gray1	#030303	3 3 3
105 darkseagreen3	#9BCD9B	155 205 155	155 gray2	#050505	5 5 5
106 darkseagreen4	#698B69	105 139 105	156 gray3	#080808	8 8 8
107 darkslateblue	#483D8B	72 61 139	157 gray4	#0A0A0A	10 10 10
108 darkslategray	#2F4F4F	47 79 79	158 gray5	#0D0D0D	13 13 13
109 darkslategray1	#97FFFF	151 255 255	159 gray6	#0F0F0F	15 15 15
110 darkslategray2	#SDEEEE	141 238 238	160 gray7	#121212	18 18 18
111 darkslategray3	#79CDCD	121 205 205	161 gray8	#141414	20 20 20
112 darkslategray4	#528B8B	82 139 139	162 gray9	#171717	23 23 23
113 darkslategrey	#2F4F4F	47 79 79	163 gray10	#1A1A1A	26 26 26
114 darkturquoise	#00CBD1	0 206 209	164 gray11	#101010	28 28 28
115 darkviolet	#9400D3	148 0 211	165 gray12	#1F1F1F	31 31 31
116 deeppink	#FF1493	255 20 147	166 gray13	#212121	33 33 33
117 deeppink1	#FF1493	255 20 147	167 gray14	#242424	36 36 36
118 deeppink2	#EE1289	238 18 137	168 gray15	#262626	38 38 38
119 deeppink3	#CD1076	205 16 118	169 gray16	#292929	41 41 41
120 deeppink4	#8B0A50	139 10 80	170 gray17	#2B2B2B	43 43 43
121 deepskyblue	ROOBFFF	0 191 255	171 gray18	#282828	46 46 46
122 deepskyblue1	#OOBFFF	0 191 255	172 gray19	#303030	48 48 48
123 deepskyblue2	#00B2BE	0 178 238	173 gray20	#333333	51 51 51
124 deepskyblue3	#009ACD	0 154 205	174 gray21	#363636	54 54 54
125 deepskyblue4	#00688B	0 104 139	175 gray22	#383838	56 56 56
126 dimgray	#696969	105 105 105	176 gray23	#3B3B3B	59 59 59
127 dimgrey	#696969	105 105 105	177 gray24	#3D3D3D	61 61 61
128 dodgerblue	#1E90FF	30 144 255	178 gray25	#404040	64 64 64
129 dodgerblue1	#1890FF	30 144 255	179 gray26	#424242	66 66 66
130 dodgerblue2	#1C86BB	28 134 238	180 gray27	#454545	69 69 69
131 dodgerblue3	#1874CD	24 116 205	181 gray28	#474747	71 71 71
132 dodgerblue4	#104E8B	16 78 139	182 gray29	#4A4A4A	74 74 74
133 firebrick	#B22222	178 34 34	183 gray30	#4D4D4D	11 11 11
134 firebrick1	#FF3030	255 48 48	184 gray31	#4F4F4F	79 79 79
135 tirebrick2	URBSCSC	238 44 44	185 gray52	#525252	82 82 82
136 firebrick3	#CD2626	205 38 38	186 gray 33	#545454	84 84 84
137 firebrick4	#8BIAIA	139 26 26	187 gray34	#575757	87 87 87
138 horaiwhite	HPPPAPU	255 250 240	188 gray35	#595959	89 89 89
139 loresigneen	#228B22	34 139 34	189 gray30	#505050	92 92 92
141 ghostwhite	#POPOPP	240 240 220	190 gray38	#555555	07 07 07
141 gridstwinte	#PED700	246 246 255	197 gray 39	#616161	00 00 00
142 gold	#PPD700	255 215 0	193 gray40	#656565	102 102 102
144 gold2	#RRC900	238 201 0	194 grav41	#696969	105 105 105
145 gold3	#CDAD00	205 173	195 grav42	#6R6R6R	107 107 107
146 gold4	#8B7500	139 117 0	196 grav43	ACREERCE	110 110 110
147 goldenrod	#DAA520	218 165 32	197 grav44	#707070	112 112 112
148 goldenrod1	#FFC125	255 193 37	198 gray45	#737373	115 115 115
149 goldenrod2	#EEB422	238 180 34	199 gray46	#757575	117 117 117
150 goldenrod3	#CD9B1D	205 155 29	200 gray47	#787878	120 120 120

R colori 201-300

201	gray48	#7A7A7A	122 122 122	251	gray98	#FAFAFA	250	250	250
202	gray49	#7D7D7D	125 125 125	252	gray99	#FCFCFC	252	252	252
203	gray50	#7F7F7F	127 127 127	253	gray100	#FFFFFF	255	255	255
204	gray51	#828282	130 130 130	254	green	#00FF00	0	255	0
205	gray52	#858585	133 133 133	255	green1	#00FF00	0	255	0
206	gray53	#878787	135 135 135	256	green2	#00EE00	0	238	0
207	gray54	#8A8A8A	138 138 138	257	green3	#00CD00	0	205	0
208	gray55	#8C8C8C	140 140 140	258	green4	#008B00	0	139	0
209	gray56	#8F8F8F	143 143 143	259	greenyellow	#ADFF2F	173	255	47
210	gray57	#919191	145 145 145	260	grey	#BEBEBE	190	190	190
211	gray58	#949494	148 148 148	261	grey0	#000000	Q	0	0
212	gray59	#969696	150 150 150	262	grey1	#030303			3
213	gray60	#999999	153 153 153	263	grey2	#050505			5
214	gray61	#9C9C9C	156 156 156	264	grey3	#080808			8
215	gray62	#9E9E9E	158 158 158	265	grey4	#0A0A0A	10	10	10
216	gray63	#A1A1A1	161 161 161	266	grey5	#0D0D0D	13	13	13
217	gray64	#A3A3A3	163 163 163	267	grey6	#OFOFOF	15	15	15
218	gray65	#A6A6A6	166 166 166	268	grey7	#121212	18	18	18
219	gray66	#A8A8A8	168 168 168	269	grey8	#141414	20	20	20
220	gray67	#ABABAB	171 171 171	270	grey9	#171717	23	23	23
221	gray68	#ADADAD	173 173 173	271	grey10	#1A1A1A	26	26	26
222	gray69	#B0B0B0	176 176 176	272	grey11	#1C1C1C	28	28	28
223	grav70	#B3B3B3	179 179 179	273	arev12	#1F1F1F	31	31	31
224	gray71	#B5B5B5	181 181 181	274	grev13	#212121	33	33	33
225	grav72	#B8B8B8	184 184 184	275	arev14	#242424		36	36
226	gray73	#BABABA	186 186 186	276	grev15	#262626			38
227	grav74	#BDBDBD	189 189 189	277	arev16	#292929	41	41	41
228	gray75	#BFBFBF	191 191 191	278	grey17	#2B2B2B	43	43	43
229	gray76	#C2C2C2	194 194 194	279	grey18	#2E2E2E	46	46	46
230	gray77	#C4C4C4	196 196 196	280	grey19	#303030	48	48	48
231	gray78	#C7C7C7	199 199 199	281	grey20	#333333	51	51	51
232	gray79	#C9C9C9	201 201 201	282	grey21	#363636	54	54	54
233	gray80	#CCCCCC	204 204 204	283	grey22	#383838	56	56	56
234	gray81	#CFCFCF	207 207 207	284	grey23	#3B3B3B	59	59	59
235	gray82	#D1D1D1	209 209 209	285	grey24	#3D3D3D	61	61	61
236	gray83	#D4D4D4	212 212 212	286	grey25	#404040	64	64	64
237	gray84	#D6D6D6	214 214 214	287	grey26	#424242	66	66	66
238	gray85	#D9D9D9	217 217 217	288	grey27	#454545	69	69	69
239	gray86	#DBDBDB	219 219 219	289	grey28	#474747	71	71	71
240	gray87	#DEDEDE	222 222 222	290	grey29	#4A4A4A	74	74	74
241	gray88	#EOEOEO	224 224 224	291	grey30	#4D4D4D	77	77	77
242	gray89	#E3E3E3	227 227 227	292	grey31	#4F4F4F	79	79	79
243	gray90	#E5E5E5	229 229 229	293	grey32	#525252	82	82	82
244	gray91	#E8E8E8	232 232 232	294	grey33	#545454	84	84	84
245	gray92	#EBEBEB	235 235 235	295	grey34	#575757	87	87	87
246	gray93	#EDEDED	237 237 237	296	grey35	#595959	89	89	89
247	gray94	#F0F0F0	240 240 240	297	grey36	#5C5C5C	92	92	92
248	gray95	#F2F2F2	242 242 242	298	grey37	#SESESE	94	94	94
249	gray96	#F5F5F5	245 245 245	299	grev38	#616161	97	97	97
250	gray97	#F7F7F7	247 247 247	300	grey39	#636363	99	99	99
1									

R colori 301-400

301 grey40	#666666	102 102 102	351 grey90	#B5B5B5	229 229 229
302 grey41	#696969	105 105 105	352 grey91	#E8E8E8	232 232 232
303 grey42		107 107 107	353 grey92	#EBEBEB	235 235 235
304 grey43	#6E6E6E	110 110 110	354 grey93	#EDEDED	237 237 237
305 grey44	#707070	112 112 112	355 grey94	#F0F0F0	240 240 240
306 grey45	#737373	115 115 115	356 grey95	#F2F2F2	242 242 242
307 grey46	#757575	117 117 117	357 grey96	#F5F5F5	245 245 245
308 grey47	# 787878	120 120 120	358 grey97	#F7F7F7	247 247 247
309 grey48	#7A7A7A	122 122 122	359 grey98	#FAFAFA	250 250 250
310 grey49	#7D7D7D	125 125 125	360 grey99	#FCFCFC	252 252 252
311 grey50	#7F7F7F	127 127 127	361 grey100	#FFFFFF	255 255 255
312 grey51	#828282	130 130 130	362 honeydew	#F0FFF0	240 255 240
313 grey52	#858585	133 133 133	363 honeydew1	#F0FFF0	240 255 240
314 grey53	#878787	135 135 135	364 honeydew2	#EOEEEO	224 238 224
315 grey54	#8A8A8A	138 138 138	365 honeydew3	#C1CDC1	193 205 193
316 grey55	#8C8C8C	140 140 140	366 honeydew4	#838B83	131 139 131
317 grey56	#8F8F8F	143 143 143	367 hotpink	#FF69B4	255 105 180
318 grey57	#919191	145 145 145	368 hotpink1	#FF6EB4	255 110 180
319 grey58	#949494	148 148 148	369 hotpink2	#EE6AA7	238 106 167
320 grey59	#969696	150 150 150	370 hotpink3	#CD6090	205 96 144
321 grey60	#9999999	153 153 153	371 hotpink4	#8B3A62	139 58 98
322 grey61	#9C9C9C	156 156 156	372 indianred	#CD5C5C	205 92 92
323 grey62	#9E9E9E	158 158 158	373 indianred1	#FF6A6A	255 106 106
324 grey63	#A1A1A1	161 161 161	374 indianred2	#EE6363	238 99 99
325 grey64	#A3A3A3	163 163 163	375 indianred3	#CD5555	205 85 85
326 grey65	#A6A6A6	166 166 166	376 indianred4	#8B3A3A	139 58 58
327 grey66	#A8A8A8	168 168 168	377 ivory	#FFFFF0	255 255 240
328 grey67	#ABABAB	171 171 171	378 ivory1	#FFFFF0	255 255 240
329 grey68	#ADADAD	173 173 173	379 ivory2	#EEEEEO	238 238 224
330 grey69	#B0B0B0	176 176 176	380 ivory3	#CDCDC1	205 205 193
331 grey70	#B3B3B3	179 179 179	381 ivory4	#8B8B83	139 139 131
332 grey71	#B5B5B5	181 181 181	382 khaki	#F0E68C	240 230 140
333 grey72	#B8B8B8	184 184 184	383 khaki1	#FFF68F	255 246 143
334 grey73	#BABABA	186 186 186	384 khaki2	#BEE685	238 230 133
335 grey74	#BDBDBD	189 189 189	385 khaki3	#CDC673	205 198 115
336 grey75	#BFBFBF	191 191 191	386 khaki4	#8B864E	139 134 78
337 grey76	#C2C2C2	194 194 194	387 lavender	#B6 E6 FA	230 230 250
338 grey77	#C4C4C4	196 196 196	388 lavenderblush	#FFF0F5	255 240 245
339 grey78	#C7C7C7	199 199 199	389 lavenderblush1	#FFF0F5	255 240 245
340 grey79	#C9C9C9	201 201 201	390 lavenderblush2	#EEEOE5	238 224 229
341 grey80	#CCCCCC	204 204 204	391 lavenderblush3	#CDC1C5	205 193 197
342 grey81	#CFCFCF	207 207 207	392 lavenderblush4	#8B8386	139 131 134
343 grey82	#D1D1D1	209 209 209	393 lawngreen	#7CFC00	124 252 0
344 grey83	#D4D4D4	212 212 212	394 lemonchiffon	#FFFACD	255 250 205
345 grey84	#D6D6D6	214 214 214	395 lemonchiffon1	#FFFACD	255 250 205
346 grey85	#D9D9D9	217 217 217	396 lemonchiffon2	#EEE9BF	238 233 191
347 grey86	#DBDBDB	219 219 219	397 lemonchiffon3	#CDC9A5	205 201 165
348 grey87	#DEDEDE	222 222 222	398 lemonchiffon4	#8B8970	139 137 112
349 grey88	#E0E0E0	224 224 224	399 lightblue	#ADD8E6	173 216 230
350 grey89	#E3E3E3	227 227 227	400 lightblue1	#BFEFFF	191 239 255

R colori 401-500

401 lightblue2	#B2DFEE	178 223 238	451 magenta1	#FF00FF	255 0 255
402 lightblue3	#9AC0CD	154 192 205	452 magenta2	#EE00EE	238 0 238
403 lightblue4	#68838B	104 131 139	453 magenta3	#CD00CD	205 0 205
404 lightcoral	#F08080	240 128 128	454 magenta4	#8B008B	139 0 139
405 lightcyan	#E0FFFF	224 255 255	455 maroon	#B03060	
406 lightcyan1	#BOFFFF	224 255 255	456 maroon1	#FF34B3	255 52 179
407 lightcyan2	#D1EEEE	209 238 238	457 maroon2	#EE30A7	238 48 167
408 lightcyan3	#B4CDCD	180 205 205	458 maroon3	#CD2990	205 41 144
409 lightcyan4	#7A8B8B	122 139 139	459 maroon4	#8B1C62	139 28 98
410 lightgoldenrod	#BEDD82	238 221 130	460 mediumaquamarine	#66CDAA	102 205 170
411 lightgoldenrod1	#FFEC8B	255 236 139	461 mediumblue	#0000CD	0 0 2 0 5
412 lightgoldenrod2	#EEDC82	238 220 130	462 mediumorchid	#BA55D3	186 85 211
413 lightgoldenrod3	#CDBE70	205 190 112	463 mediumorchid1	#E066FF	224 102 255
414 lightgoldenrod4	#8B814C	139 129 76	464 mediumorchid2	#D15FEE	209 95 238
415 lightgoldenrodyellow	#FAFAD2	250 250 210	465 mediumorchid3	#B452CD	180 82 205
416 lightgray	#D3D3D3	211 211 211	466 mediumorchid4	#7A378B	122 55 139
417 lightgreen	#90EE90	144 238 144	467 mediumpurple	#9370DB	147 112 219
418 lightgrey	#D3D3D3	211 211 211	468 mediumpurple1	#AB82FF	171 130 255
419 lightpink	#FFB6C1	255 182 193	469 mediumpurple2	#9F79EE	159 121 238
420 lightpink1	#FFABB9	255 174 185	470 mediumpurple3	#8968CD	137 104 205
421 lightpink2	#BEA2AD	238 162 173	471 mediumpurple4	#5D478B	93 71 139
422 lightpink3	#CD8C95	205 140 149	472 mediumseagreen	#3CB371	60 179 113
423 lightpink4	#8B5F65	139 95 101	473 mediumslateblue	#7B68EE	123 104 238
424 lightsalmon	#FFA07A	255 160 122	474 mediumspringgreen	#00FA9A	0 250 154
425 lightsalmon1	#FFA07A	255 160 122	475 mediumturquoise	#48D1CC	72 209 204
426 lightsalmon2	#EE9572	238 149 114	476 mediumvioletred	#C71585	199 21 133
427 lightsalmon3	#CD8162	205 129 98	477 midnightblue	#191970	25 25 112
428 lightsalmon4	#8B5742	139 87 66	478 mintcream	#F5FFFA	245 255 250
429 lightseagreen	#20B2AA	32 178 170	479 mistyrose	#FFE4E1	255 228 225
430 lightskyblue	#87CEFA	135 206 250	480 mistyrose1	#FFE4E1	255 228 225
431 lightskyblue1	#B0B2FF	176 226 255	481 mistyrose2	#BBD5D2	238 213 210
432 lightskyblue2	#A4D3EE	164 211 238	482 mistyrose3	#CDB7B5	205 183 181
433 lightskyblue3	#8DB6CD	141 182 205	483 mistyrose4	#8B7D7B	139 125 123
434 lightskyblue4	#607B8B	96 123 139	484 moccasin	#FFE4B5	255 228 181
435 lightslateblue	#8470FF	132 112 255	485 navajowhite	#FFDEAD	255 222 173
436 lightslategray	#778899	119 136 153	486 navajowhite1	#FFDEAD	255 222 173
437 lightslategrey	#778899	119 136 153	487 navajowhite2	#EECFA1	238 207 161
438 lightsteelblue	#BOC4DE	176 196 222	488 navajowhite3	#CDB38B	205 179 139
439 lightsteelblue1	#CAE1FF	202 225 255	489 navajowhite4		139 121 94
440 lightsteelblue2	#BCD2EE	188 210 238	490 navy	#000080	0 0 128
441 lightsteelblue3	#A2B5CD	162 181 205	491 navyblue	#000080	0 0 128
442 lightsteelblue4	#6E7B8B	110 123 139	492 oldlace	#FDF5E6	253 245 230
443 lightyellow	#FFFFE0	255 255 224	493 olivedrab	#6B8B23	107 142 35
444 lightyellow1	#FFFFE0	255 255 224	494 olivedrab1	#COFF3E	192 255 62
445 lightyellow2	#EEEED1	238 238 209	495 olivedrab2	#B3EE3A	179 238 58
446 lightyellow3	#CDCDB4	205 205 180	496 olivedrab3	#9ACD32	154 205 50
447 lightyellow4	#8B8B7A	139 139 122	497 olivedrab4	#698B22	105 139 34
448 limegreen	#32CD32	50 205 50	498 orange	#FFA500	255 165 0
449 linen	#FAF0E6	250 240 230	499 orange1	#FFA500	255 165 0
450 maganta	AFFOOFF	255 0 255	500 orange2	#EE9A00	238 154 0

R colori 501-600

501 orange3	#CD8500	205 133 0	551 purple4	#551A8B	85 26 139
502 orange4	#8B5A00	139 90 0	552 red	#FF0000	255 0 0
503 orangered	#FF4500	255 69 0	553 red1	#FF0000	255 0 0
504 orangered1	#FF4500	255 69 0	554 red2	#BE0000	238 0 0
505 orangered2	#EE4000	238 64 0	555 red3	#CD0000	205 0 0
506 orangered3	#CD3700	205 55 0	556 red4	#8B0000	139 0 0
507 orangered4	#8B2500	139 37 0	557 rosybrown	#BC8F8F	188 143 143
508 orchid	#DA70D6	218 112 214	558 rosybrown1	#FFC1C1	255 193 193
509 orchid1	#FF83FA	255 131 250	559 rosybrown2	#EEB4B4	238 180 180
510 orchid2	#EE7AE9	238 122 233	560 rosybrown3	#CD9B9B	205 155 155
511 orchid3	#CD69C9	205 105 201	561 rosybrown4	#8B6969	139 105 105
512 orchid4	#8B4789	139 71 137	562 royalblue	#4169B1	65 105 225
513 palegoldenrod	#EEE8AA	238 232 170	563 royalblue1	#4876FF	72 118 255
514 palegreen	#98FB98	152 251 152	564 royalblue2	#436BEE	67 110 238
515 palegreen1	#9AFF9A	154 255 154	565 royalblue3	#3A5FCD	58 95 205
516 palegreen2	#90EE90	144 238 144	566 royalblue4	#27408B	39 64 139
517 palegreen3	#7CCD7C	124 205 124	567 saddlebrown		139 69 19
518 palegreen4	#548B54	84 139 84	568 salmon	#FA8072	250 128 114
519 paleturquoise	#AFEEEE	175 238 238	569 salmon1	#FF8C69	255 140 105
520 paleturquoise1	#BBFFFF	187 255 255	570 salmon2	#EE8262	238 130 98
521 paleturquoise2	#AEEEEE	174 238 238	571 salmon3	#CD7054	205 112 84
522 paleturquoise3	#96CDCD	150 205 205	572 salmon4	#8B4C39	139 76 57
523 paleturquoise4	#668B8B	102 139 139	573 sandybrown	#F4A460	244 164 96
524 palevioletred	#DB7093	219 112 147	574 seagreen	#2E8B57	46 139 87
525 palevioletred1	#FF82AB	255 130 171	575 seagreen1	#54FF9F	84 255 159
526 palevioletred2	#EE799F	238 121 159	576 seagreen2	#4EEE94	78 238 148
527 palevioletred3	#CD6889	205 104 137	577 seagreen3	#43CD80	67 205 128
528 palevioletred4	#8B475D	139 71 93	578 seagreen4	#2B8B57	46 139 87
529 papayawhip	#FFBFD5	255 239 213	579 seashell	#FFF5BE	255 245 238
530 peachpuff	#FFDAB9	255 218 185	580 seashell1	#FFF5EE	255 245 238
531 peachpuff1	#FFDAB9	255 218 185	581 seashell2	#BBBSDB	238 229 222
532 peachpuff2	#BECBAD	238 203 173	582 seashell3	#CDC5BF	205 197 191
533 peachpuff3	#CDAF95	205 175 149	583 seashell4	#8B8682	139 134 130
534 peachpuff4	#8B7765	139 119 101	584 sienna	#A0522D	160 82 45
535 peru	#CD853F	205 133 63	585 sienna1	#FF8247	255 130 71
536 pink	#FFC0CB	255 192 203	586 sienna2	#EE7942	238 121 66
537 pink1	#FFB5C5	255 181 197	587 sienna3	#CD6839	205 104 57
538 pink2	#EEA9B8	238 169 184	588 sienna4	#8B4726	139 71 38
539 pink3	#CD919E	205 145 158	589 skyblue	#87CEEB	135 206 235
540 pink4	#8B636C	139 99 108	590 skyblue1	#87CEFF	135 206 255
541 plum	#DDA0DD	221 160 221	591 skyblue2	#7ECOEE	126 192 238
542 plum1	#FFBBFF	255 187 255	592 skyblue3	#6CA6CD	108 166 205
543 plum2	# BEAEBE	238 174 238	593 skyblue4	#4A708B	74 112 139
544 plum3	#CD96CD	205 150 205	594 slateblue	#¢A5ACD	106 90 205
545 plum4	#8B668B	139 102 139	595 slateblue1	#836FFF	131 111 255
546 powderblue	#B0E0E6	176 224 230	596 slateblue2	#7A67BB	122 103 238
547 purple	#A020F0	160 32 240	597 slateblue3	#6959CD	105 89 205
548 purple1	#9830FF	155 48 255	598 slateblue4	#473C8B	71 60 139
549 purple2	#912CEE	145 44 238	599 slategray	#708090	112 128 144
550 purple3	#7D26CD	125 38 205	600 slategray1	#C6E2FF	198 226 255

R colori 601-657

601	slategray2	#B9D3EE	185	211	238
602	slategray3	#9FB6CD	159	182	205
603	slategray4	#6C7B8B	108	123	139
604	slategrey	#708090	112	128	144
605	snow	#FFFAFA	255	250	250
606	snow1	#FFFAFA	255	250	250
607	snow2	#EEE9E9	238	233	233
608	snow3	#CDC9C9	205	201	201
609	snow4	#8B8989	139	137	137
610	springgreen	#00FF7F	0	255	127
611	springgreen1	#00FF7F	0	255	127
612	springgreen2	#00EE76	0	23.8	118
613	springgreen3	#00CD66	0	205	102
614	springgreen4	#008B45			69
615	steelblue	#4682B4	70	130	180
616	steelblue1	#63B8FF	99	184	255
617	steelblue2	#5CACEE	92	172	238
618	steelblue3	#4F94CD	79	148	205
619	steelblue4	#36648B			139
620	tan	#D2B48C	210	180	140
621	tan1	#FFA54F	255	165	79
622	tan2	#EE9A49	238	154	73
623	tan3	#CD853F	205	133	63
624	tan4	#8B5A2B	139	90	43
625	thistle	#D8BFD8	216	191	216
					_
626	thistle1	#FFE1FF	255	225	255
626 627	thistle1 thistle2	#FFE1FF #EED2EE	255 238	225 210	255 238
626 627 628	thistle1 thistle2 thistle3	#FFE1FF #EED2EE #CDB5CD	255 238 205	225 210 181	255 238 205
626 627 628 629	thistle1 thistle2 thistle3 thistle4	#FFE1FF #BED2BE #CDB5CD #8B7B8B	255 238 205 139	225 210 181 123	255 238 205 139
626 627 628 629 630	thistle1 thistle2 thistle3 thistle4 tomato	#FFE1FF #EED2EE #CDB5CD #8E7B8E #FF6347	255 238 205 139 255	225 210 181 123 99	255 238 205 139 71
626 627 628 629 630 631	thistle1 thistle2 thistle3 thistle4 tomato1	#FFE1FF #EED2EE #CDB5CD #8B7B8B #FF6347 #FF6347	255 238 205 139 255 255	225 210 181 123 99 99	255 238 205 139 71 71
626 627 628 629 630 631 632	thistle1 thistle2 thistle3 thistle4 tomato tomato1 tomato2	#FFE1FF #BED2BE #CDB5CD #8B7B8B #FF6347 #FF6347 #EE5C42	255 238 205 139 255 255 238	225 210 181 123 99 99 92	255 238 205 139 71 71 66
626 627 628 630 630 631 632 633	thistle1 thistle2 thistle3 thistle4 tomato1 tomato1 tomato2 tomato3	#FFE1FF #BBD2BB #CDB5CD #887B8B #FF6347 #FF6347 #BE5C42 #CD4F39	255 238 205 139 255 255 238 205	225 210 181 123 99 99 99 92 79	255 238 205 139 71 71 66 57
626 627 628 629 630 631 632 633 634	thistle1 thistle2 thistle3 thistle4 tomato1 tomato1 tomato2 tomato3 tomato4	#FFE1FF #EBD2EE #CDB5CD #887888 #FF6347 #FF6347 #EE5C42 #CD4F39 #883626	255 238 205 139 255 255 238 205 139	225 210 181 123 99 99 99 92 79 54	255 238 205 139 71 71 66 57 38
626 627 628 630 631 631 632 633 634 635	thistle1 thistle2 thistle3 thistle4 tomato tomato1 tomato2 tomato3 tomato4 turquoise	#FFE1FF #BBD2BB #CDB5CD #8B7B8B #FF6347 #FF6347 #BE5C42 #CD4F39 #8B3626 #40B0D0	255 238 205 139 255 255 238 205 139 64	225 210 181 123 99 99 92 79 54 224	255 238 205 139 71 71 66 57 38 208
626 627 628 630 631 632 633 633 634 635 636	thistle1 thistle2 thistle3 tomato1 tomato1 tomato2 tomato3 tomato4 turquoise1 turquoise1	#FFE1FF #BBD2BB #CDB5CD #8B7B8B #FF6347 #FF6347 #BE5C42 #CD4F39 #9B3626 #40B0D0 #00F5FF	255 238 205 139 255 255 238 205 139 64 0	225 210 181 123 99 99 92 79 54 224 224	255 238 205 139 71 71 66 57 38 208 255 228
626 627 628 629 630 631 632 633 634 635 635 636 637	thistle1 thistle2 thistle3 tomato tomato1 tomato2 tomato3 tomato4 turquoise turquoise1 turquoise3	#FFE1FF #BBD288 #CD85CD #887888 #FF6347 #FF6347 #E5C42 #CD4F39 #983626 #4080D0 #00F5FF #006588	255 238 205 139 255 238 205 139 64 0 0	225 210 181 123 99 99 92 79 54 224 245 229	255 238 205 139 71 71 66 57 38 208 255 238 205
626 627 628 630 631 632 633 634 635 636 637 638	thistle1 thistle2 thistle3 tomato0 tomato1 tomato2 tomato3 tomato4 turquoise1 turquoise2 turquoise2 turquoise3	#FFE1FF #BED288 #CD85CD #887888 #FF6347 #E5C42 #CD4599 #983626 #4080D0 #00F5FF #008588 #00055CD	255 238 205 139 255 255 238 205 139 64 0 0	225 210 181 123 99 99 92 79 54 224 245 229 197	255 238 205 139 71 66 57 38 208 255 238 205 205
626 627 628 629 630 631 632 633 634 635 636 637 638 639 639	thistle1 thistle2 thistle3 tomato1 tomato1 tomato2 tomato3 tomato4 turquoise turquoise1 turquoise2 turquoise3 turquoise4	#FFE1FF #BED288 #CD85CD #887888 #FF6347 #E5C42 #CD4599 #883626 #4080D0 #00F5FF #008588 #0005CD #00053BF	255 238 205 255 255 238 205 139 64 0 0 0 0 0	225 210 181 123 99 92 79 92 79 54 224 224 224 229 197 134	255 238 205 139 71 71 66 57 38 208 255 238 208 208 238 205 139
626 627 628 630 631 632 633 634 635 636 637 638 639 640	thistle1 thistle2 thistle3 tomato1 tomato1 tomato2 tomato3 tomato4 turquoise1 turquoise1 turquoise2 turquoise3 turquoise4 violet	#FFE1FF #EED2EE #CD85CD #8F76347 #FF6347 #EE5C42 #CD4F39 #408050 #00F5FF #00858E #00C5CD #00868E #8D828E	255 238 205 255 255 238 205 139 64 0 0 0 0 0 238	225 210 181 123 99 99 92 79 224 224 224 225 197 134 130	255 238 205 139 71 71 66 57 38 208 208 208 208 208 205 139 238
626 627 628 629 630 631 632 633 633 634 635 635 638 639 640 642	thistle1 thistle2 thistle3 tomato1 tomato1 tomato2 tomato3 tomato4 turquoise1 turquoise1 turquoise3 turquoise3 turquoise4 violet violetred1	#FFE1FF #EED2EE #CD85CD #8F76347 #FF6347 #EE5C42 #CD4F39 #48E3626 #40E0D0 #00F5FF #00E5EE #00C5CD #00868E #EB2EE #D02900 #FF3E96	255 238 205 255 238 255 238 205 139 64 0 0 0 0 0 238 208 228	225 210 181 123 99 92 92 79 92 24 224 224 224 229 197 134 130 32	255 238 205 139 71 71 666 57 38 208 208 208 208 238 139 238 139 238
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643	thistle1 thistle2 thistle3 thistle4 tomato1 tomato2 tomato3 tumato3 turquoise1 turquoise1 turquoise3 turquoise3 turquoise4 violet violetred1 violetred2	#FFE1FF #EED2EE #CD85CD #887888 #FF6347 #EE5C42 #CD4F39 #408000 #00F5FF #008588 #00C5CD #008588 #008588 #E88288 #D02090 #FF3896 #E83A8C	255 238 205 255 255 238 205 139 64 0 0 0 0 238 208 208 225 238	225 210 181 123 99 99 92 79 54 224 245 229 197 134 130 32 32 62	255 238 205 139 71 66 57 38 208 208 2255 238 205 139 238 139 238 144
626 627 628 630 631 632 633 634 635 636 636 638 639 640 644	thistle1 thistle2 thistle3 thistle4 tomato1 tomato2 tomato2 tomato3 turquoise1 turquoise1 turquoise3 turquoise3 turquoise4 violet violetred1 violetred2 violetred3	#FFE1FF #EED2EE #CD85CD #FF6347 #FF6347 #EE5C42 #CD4F39 #40E000 #00F5FF #00E5EE #0025CD #0085EE #EE32EE #D02090 #FF3E96 #EE3A8C #CD3272	255 238 205 255 255 238 205 139 64 0 0 0 238 208 238 208 255 238	225 210 181 123 99 99 92 79 54 224 245 229 197 134 130 32 62 58 50	255 238 205 139 71 71 666 57 38 208 208 208 208 238 205 139 238 149 238 144 150 140
626 627 628 630 631 632 633 634 635 636 635 636 638 639 640 641 642 643 644	thistle1 thistle2 thistle3 thistle4 tomato1 tomato2 tomato2 tomato3 turquoise1 turquoise1 turquoise3 turquoise4 violet violetred1 violetred3 violetred4	#FFE1FF #EED2EE #CD85CD #FF6347 #FF6347 #EE5C42 #CD4F39 #A823626 #40E000 #00F5FF #00E5EE #0055CD #0055CD #00858E #E828E #E828E #D02090 #FF3E96 #E83A8C #CD3278 #882252	255 238 205 255 238 205 139 64 0 0 0 0 238 208 255 238 208 255 238	225 210 181 123 99 99 54 224 224 224 224 197 134 130 32 62 58 50 34	255 238 205 139 71 71 666 57 38 208 208 208 208 208 238 205 139 238 144 150 140 120 82
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 644	thistle1 thistle2 thistle3 thistle4 tomato1 tomato2 tomato3 tomato3 turquoise1 turquoise1 turquoise3 turquoise4 violet violetred1 violetred3 violetred4 wheat	# FFE1 FF # EED2EE # CD85CD # FF6347 # FF6347 # EE5C42 # CD4F39 # 402000 # 0055FF # 00858E # 008	255 238 205 255 255 238 205 139 64 0 0 0 238 208 208 208 208 208 208 208 208 208 20	225 210 181 123 99 92 79 54 224 245 229 197 134 130 32 62 58 50 34	255 238 205 139 71 71 666 57 38 208 255 238 205 139 238 144 150 140 120 82
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647	thistle1 thistle2 thistle3 thistle4 tomato1 tomato1 tomato2 tomato3 tomato4 turquoise1 turquoise1 turquoise3 turquoise4 violetred1 violetred1 violetred3 violetred4 wheat	# FFE1 FF # EED2EE # CD85CD # FF6347 # FF6347 # EES642 # CD4F39 # 408000 # 00F5FF # 00E5EE # 0085EE # 0085EEE # 0085EEE # 0085EEE # 0085EEE # 0085EEE # 0085EEE # 0085EEE	255 238 205 255 238 205 139 64 0 0 0 238 208 208 208 255 238 208 205 139 245	2255 210 181 123 99 99 52 79 54 224 245 224 245 224 137 134 130 32 62 58 50 34 222 231	255 238 205 139 71 71 666 57 38 208 255 238 205 139 238 144 150 144 150 140 120 82 179
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 647 648	thistle1 thistle2 thistle3 thistle4 tomato3 tomato1 tomato3 tomato3 turquoise1 turquoise1 turquoise3 turquoise4 violetred1 violetred1 violetred2 violetred3 violetred4 wheat wheat1	# FFE1 FF # EED2EE # CD85CD # # FF6347 # EF6347 # EES42 # CD4F39 # 408000 # 0055FF # 00858E # 00	255 238 205 255 238 205 139 64 0 0 0 0 238 208 255 238 208 255 238 205 139 245 255	225 210 181 123 99 92 79 54 224 225 229 197 134 130 32 62 58 50 34 222 231 221	255 238 205 139 71 71 66 57 38 208 238 208 238 208 238 139 238 144 150 140 120 82 179 186 174
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 642 643 644 645 648 649	thistle1 thistle2 thistle3 thistle4 tomato1 tomato1 tomato2 tomato3 tomato4 turquoise1 turquoise1 turquoise3 turquoise4 violetred1 violetred1 violetred2 violetred3 violetred4 wheat1 wheat2 wheat3	# FFE1 FF # EED2EE # CD85CD # # FF6347 # EF6347 # EE5642 # CD4F39 # 408000 # 408000 # 408000 # 40805EE # 4085EE # 0085EE #	255 238 205 255 238 205 139 64 0 0 0 0 0 0 0 238 208 238 208 238 205 238 205 238 205	225 210 181 123 99 92 79 54 224 225 229 197 134 130 32 62 58 50 34 222 231 216	255 238 205 139 71 71 66 57 38 208 208 238 205 238 205 238 205 238 139 238 144 150 120 82 179 186 174
626 627 628 630 631 632 633 634 635 636 637 638 639 640 642 643 644 645 645 646 649 649 649	thistle1 thistle2 thistle3 thistle4 tomato1 tomato2 tomato2 tomato3 turquoise1 turquoise1 turquoise3 turquoise3 turquoise4 violetred1 violetred1 violetred3 violetred3 violetred4 wheat1 wheat2 wheat3 wheat4	# FFE1 FF # EED2EE # CD85CD # FF6347 # FF6347 # EF6347 # CD4F39 # CD4F39 # 408000 # 0055FF # 00858E # 008	255 238 205 255 238 205 139 64 0 0 0 0 0 0 0 238 208 238 208 238 208 238 208 238 238 238 238 238 238 238 238 238 23	225 210 181 123 99 99 92 79 54 224 225 197 134 130 32 62 58 50 34 222 231 216 136	255 238 205 139 71 66 57 38 208 255 238 205 139 238 144 150 140 120 82 179 186 174 150 102

651	whitesmoke	#F5F5F5	245	245	245
652	yellow	#FFFF00	255	255	0
653	yellow1	#FFFF00	255	255	0
654	yellow2	#EEEE00	238	238	0
655	yellow3	#CDCD00	205	205	0
656	yellow4	#8B8B00	139	139	0
657	yellowgreen	#9ACD32	154	205	50